Open Access
Vis Cancer Med
Volume 4, 2023
Article Number 1
Number of page(s) 14
Published online 06 January 2023
  1. Cynis H, Rahfeld JU, Stephan A, et al. Isolation of an isoenzyme of human glutaminyl cyclase: retention in the Golgi complex suggests involvement in the protein maturation machinery. Journal of Molecular Biology. 2008;379(5):966–980. [CrossRef] [PubMed] [Google Scholar]
  2. Azarkan M, Wintjens R, Looze Y, et al. Detection of three wound-induced proteins in papaya latex. Phytochemistry. 2004;65(5):525–534. [CrossRef] [PubMed] [Google Scholar]
  3. Messer M, Enzymatic cyclization of L-glutamine and L-glutaminyl peptides. Nature. 1963;197:1299. [CrossRef] [PubMed] [Google Scholar]
  4. Busby WH, Quackenbush GE, Humm J, et al. An enzyme(s) that converts glutaminyl-peptides into pyroglutamyl-peptides – presence in pituitary, brain, adrenal-medulla, and lymphocytes. Journal of Biological Chemistry. 1987;262(18):8532–8536. [CrossRef] [Google Scholar]
  5. Vale W, Spiess J, Rivier C, et al. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science. 1981;213(4514):1394–1397. [CrossRef] [PubMed] [Google Scholar]
  6. Pohl T, Zimmer M, Mugele K, et al. Primary structure and functional expression of a glutaminyl cyclase. Proceedings of the National Academy of Sciences of the United States of America. 1991;88(22):10059–10063. [CrossRef] [PubMed] [Google Scholar]
  7. Fischer WH, Spiess J Identification of a mammalian glutaminyl cyclase converting glutaminyl into pyroglutamyl peptides. Proceedings of the National Academy of Sciences of the United States of America. 1987;84(11);3628–3632. [CrossRef] [PubMed] [Google Scholar]
  8. Wang XJ, Wang L, Yu X, et al. Glutaminyl cyclase inhibitor exhibits anti-inflammatory effects in both AD and LPS-induced inflammatory model mice. International Immunopharmacology. 2019;75. [Google Scholar]
  9. Logtenberg MEW, Jansen JHM, Raaben M, et al. Glutaminyl cyclase is an enzymatic modifier of the CD47-SIRP alpha axis and a target for cancer immunotherapy. Nature Medicine. 2019;25(4):612–619. [CrossRef] [PubMed] [Google Scholar]
  10. Wu ZQ, Weng LJ, Zhang TB, et al. Identification of glutaminyl cyclase isoenzyme isoQC as a regulator of SIRP alpha-CD47 axis. Cell Research 2019;29(6):502–505. [CrossRef] [PubMed] [Google Scholar]
  11. Zhao XW, van Beek EM, Schornagel K, et al. CD47-signal regulatory protein-alpha (SIRPalpha) interactions form a barrier for antibody-mediated tumor cell destruction. Proc Natl Acad Sci U S A.. 2011;108(45):18342–18347. [CrossRef] [PubMed] [Google Scholar]
  12. Moras M, Lefevre SD, Ostuni MA, From erythroblasts to mature red blood cells: organelle clearance in mammals. Frontiers in Physiology. 2017;8:1076. [CrossRef] [PubMed] [Google Scholar]
  13. Ch R, Rey G, Ray S, et al. Rhythmic glucose metabolism regulates the redox circadian clockwork in human red blood cells. Nature Communications. 2021;12(1):377. [CrossRef] [PubMed] [Google Scholar]
  14. Wiback SJ, Palsson BO Extreme pathway analysis of human red blood cell metabolism. Biophysical Journal. 2002;83(2):808–818. [CrossRef] [PubMed] [Google Scholar]
  15. Ingram JR, Blomberg OS, Sockolosky JT, et al. Localized CD47 blockade enhances immunotherapy for murine melanoma. Proc Natl Acad Sci U S A.. 2017;114(38):10184–10189. [CrossRef] [PubMed] [Google Scholar]
  16. Schilling S, Cynis H, von Bohlen A, et al. Isolation, catalytic properties, and competitive inhibitors of the zinc-dependent murine glutaminyl cyclase. Biochemistry. 2005;44(40):13415–13424. [CrossRef] [PubMed] [Google Scholar]
  17. Schilling S, Niestroj AJ, Rahfeld JU, et al. Identification of human glutaminyl cyclase as a metalloenzyme – Potent inhibition by imidazole derivatives and heterocyclic chelators. Journal of Biological Chemistry. 2003;278(50):49773–49779. [CrossRef] [Google Scholar]
  18. Buchholz M, Heiser U, Schilling S, et al. The first potent inhibitors for human glutaminyl cyclase: synthesis and structure-activity relationship. Journal of Medicinal Chemistry. 2006;49(2):664–677. [CrossRef] [PubMed] [Google Scholar]
  19. Bockers TM, Kreutz MR, Pohl T, Glutaminyl-cyclase expression in the bovine/porcine hypothalamus and pituitary. Journal of Neuroendocrinology. 1995;7(6):445–453. [CrossRef] [PubMed] [Google Scholar]
  20. Oberg KA, Ruysschaert JM, Azarkan M, et al. Papaya glutamine cyclase, a plant enzyme highly resistant to proteolysis, adopts an all-beta conformation. European Journal of Biochemistry. 1998;258(1):214–222. [CrossRef] [PubMed] [Google Scholar]
  21. Wintjens R, Belrhali H, Clantin B, et al. Crystal structure of papaya glutaminyl cyclase, an archetype for plant and bacterial glutaminyl cyclases. Journal of Molecular Biology. 2006;357(2):457–470. [CrossRef] [PubMed] [Google Scholar]
  22. Alam M, Ho S, Vance DE, et al. Heterologous expression, purification, and characterization of human triacylglycerol hydrolase. Protein Expression of Purification. 2002;24(1):33–42. [CrossRef] [Google Scholar]
  23. Stephan A, Wermann M, von Bohlen A, et al. Mammalian glutaminyl cyclases and their isoenzymes have identical enzymatic characteristics. FEBS Journal. 2009;276(22):6522–6536. [CrossRef] [Google Scholar]
  24. Hartlage-Rubsamen M, Staffa K, Waniek A, et al. Developmental expression and subcellular localization of glutaminyl cyclase in mouse brain. International Journal of Developmental Neuroscience. 2009;27(8):825–835. [CrossRef] [PubMed] [Google Scholar]
  25. Reik W, Walter J Genomic imprinting: parental influence on the genome. Nature Reviews Genetics. 2001;2(1):21–32. [CrossRef] [PubMed] [Google Scholar]
  26. Horsthemke B, Mechanisms of imprint dysregulation. American Journal of Medical Genetics Part C Seminars in Medical Genetics. 2010;154C(3):321–328. [CrossRef] [PubMed] [Google Scholar]
  27. Liu Y, Chen C, Wang X, et al. An epigenetic role of mitochondria in cancer. Cells. 2022;11(16):2518. [CrossRef] [PubMed] [Google Scholar]
  28. Guo J, He H, Liu Q, et al. Identification and epigenetic analysis of a maternally imprinted gene Qpct. Moleculars and Cell. 2015;38(10):859–865. [CrossRef] [PubMed] [Google Scholar]
  29. De Kimpe L, Bennis A, Zwart R, et al. Disturbed Ca2+ homeostasis increases glutaminyl cyclase expression; connecting two early pathogenic events in Alzheimer’s disease in vitro. PLoS One. 2012;79. [Google Scholar]
  30. Charo IF, Taubman MB Chemokines in the pathogenesis of vascular disease. Circulation Research. 2004;95(9):858–866. [CrossRef] [PubMed] [Google Scholar]
  31. Inoshima I, Kuwano K, Hamada N, et al. Anti-monocyte chemoattractant protein-1 gene therapy attenuates pulmonary fibrosis in mice. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2004;286(5):L1038–L1044. [CrossRef] [PubMed] [Google Scholar]
  32. Galimberti D, Fenoglio C, Lovati C, et al. Serum MCP-1 levels are increased in mild cognitive impairment and mild Alzheimer’s disease. Neurobiology of Aging. 2006;27(12):1763–1768. [CrossRef] [PubMed] [Google Scholar]
  33. Kehlen A, Haegele M, Menge K, et al. Role of glutaminyl cyclases in thyroid carcinomas. Endocrine-Related Cancer. 2013;20(1):79–90. [CrossRef] [PubMed] [Google Scholar]
  34. Conroy MJ, Lysaght J CX3CL1 signaling in the tumor microenvironment. Advances in Experimental Medicine and Biology. 2020;1231:1–12. [CrossRef] [PubMed] [Google Scholar]
  35. Kehlen A, Haegele M, Bohme L, et al. N-terminal pyroglutamate formation in CX3CL1 is essential for its full biologic activity. Bioscience Reports. 2017;37(4):BSR20170712. [CrossRef] [PubMed] [Google Scholar]
  36. Schilling S, Manhart S, Hoffmann T, et al. Substrate specificity of glutaminyl cyclases from plants and animals. Biological Chemistry. 2003;384(12):1583–1592. [CrossRef] [PubMed] [Google Scholar]
  37. Awade AC, Cleuziat P, Gonzales T, et al. Pyrrolidone carboxyl peptidase (Pcp) – an enzyme that removes pyroglutamic acid (pGlu) from pGlu-peptides and pGlu-proteins. Proteins-Structure Function and Bioinformatics. 1994;20(1):34–51. [CrossRef] [PubMed] [Google Scholar]
  38. Blombäck B [44] Derivatives of glutamine in peptides. In: Methods in Enzymology. Academic Press;1967. p. 398–411. [CrossRef] [Google Scholar]
  39. Cynis H, Hoffmann T, Friedrich D, et al. The isoenzyme of glutaminyl cyclase is an important regulator of monocyte infiltration under inflammatory conditions. EMBO Molecular Medicine. 2011;3(9):545–558. [CrossRef] [PubMed] [Google Scholar]
  40. Goren HJ, Bauce LG, Vale W, Forces and structural limitations of binding of thyrotrophin-releasing factor to the thyrotrophin-releasing receptor: the pyroglutamic acid moiety. Molecular Pharmacology. 1977;13(4):606–614. [PubMed] [Google Scholar]
  41. Abraham GN, Podell DN, Pyroglutamic acid. Non-metabolic formation, function in proteins and peptides, and characteristics of the enzymes effecting its removal. Molecular and Cellular Biochemistry. 1981;38(Spec No(Pt 1)):181–190. [CrossRef] [PubMed] [Google Scholar]
  42. Wang Z, Sun B, Zhu F, Molecular characterization of glutaminyl-peptide cyclotransferase(QPCT)in Scylla paramamosain and its role in Vibrio alginolyticus and white spot syndrome virus (WSSV) infection. Fish and Shellfish Immunology. 2018;78:299–309. [CrossRef] [Google Scholar]
  43. Schilling S, Hoffmann T, Manhart S, et al. Glutaminyl cyclases unfold glutamyl cyclase activity under mild acid conditions. FEBS Letters. 2004;563(1–3):191–196. [CrossRef] [PubMed] [Google Scholar]
  44. Pawlak J, Manjunatha Kini R, Snake venom glutaminyl cyclase. Toxicon. 2006;48(3):278–286. [CrossRef] [PubMed] [Google Scholar]
  45. Benter IF, Hirsh EM, Tuchman AJ, et al. N-terminal degradation of low molecular weight opioid peptides in human cerebrospinal fluid. Biochemical Pharmacology. 1990;40(3):465–472. [CrossRef] [PubMed] [Google Scholar]
  46. Gontsarova A, Kaufmann E, Tumani H, et al. Glutaminyl cyclase activity is a characteristic feature of human cerebrospinal fluid. Clinica Chimica Acta. 2008;389(1–2):152–159. [CrossRef] [Google Scholar]
  47. Van Coillie E, Proost P, Van Aelst I, et al. Functional comparison of two human monocyte chemotactic protein-2 isoforms, role of the amino-terminal pyroglutamic acid and processing by CD26/dipeptidyl peptidase IV. Biochemistry. 1998;37(36):12672–12680. [CrossRef] [PubMed] [Google Scholar]
  48. Chen YL, Huang KF, Kuo WC, et al. Inhibition of glutaminyl cyclase attenuates cell migration modulated by monocyte chemoattractant proteins. Biochemical Journal. 2012;442(2):403–412. [CrossRef] [PubMed] [Google Scholar]
  49. Barreira da Silva R, Leitao RM, Pechuan-Jorge X, et al. Loss of the intracellular enzyme QPCTL limits chemokine function and reshapes myeloid infiltration to augment tumor immunity. Nature Immunology. 2022;23(4):568–580. [CrossRef] [PubMed] [Google Scholar]
  50. Matlung HL, Szilagyi K, Barclay NA, et al. The CD47-SIRP alpha signaling axis as an innate immune checkpoint in cancer. Immunological Reviews. 2017;276(1):145–164. [CrossRef] [PubMed] [Google Scholar]
  51. Reinhold MI, Lindberg FP, Plas D, et al. In vivo expression of alternatively spliced forms of integrin-associated protein (CD47). Journal of Cell Science. 1995;108(Pt 11):3419–3425. [CrossRef] [PubMed] [Google Scholar]
  52. Lindberg FP, Gresham HD, Schwarz E, et al. Molecular cloning of integrin-associated protein: an immunoglobulin family member with multiple membrane-spanning domains implicated in alpha v beta 3-dependent ligand binding. Journal of Cell Biology. 1993;123(2):485–496. [CrossRef] [PubMed] [Google Scholar]
  53. Oldenborg PA, Zheleznyak A, Fang YF, et al. Role of CD47 as a marker of self on red blood cells. Science. 2000;288(5473):2051–2054. [CrossRef] [PubMed] [Google Scholar]
  54. Casey SC, Tong L, Li Y, et al. MYC regulates the antitumor immune response through CD47 and PD-L1. Science. 2016;352(6282):227–231. [CrossRef] [PubMed] [Google Scholar]
  55. Li W, Gupta SK, Han W, et al. Targeting MYC activity in double-hit lymphoma with MYC and BCL2 and/or BCL6 rearrangements with epigenetic bromodomain inhibitors. Journal of Hematology & Oncology. 2019;12(1):73. [CrossRef] [PubMed] [Google Scholar]
  56. Zhang H, Lu H, Xiang L, et al. HIF-1 regulates CD47 expression in breast cancer cells to promote evasion of phagocytosis and maintenance of cancer stem cells. Proceedings of the National Academy of Sciences of the United States of America. 2015;112(45):E6215–E6223. [PubMed] [Google Scholar]
  57. Monti E, Marras E, Prini P, et al. Luteolin impairs hypoxia adaptation and progression in human breast and colon cancer cells. European Journal of Pharmacology. 2020;881:173210. [CrossRef] [PubMed] [Google Scholar]
  58. Samanta D, Park Y, Ni X, et al. Chemotherapy induces enrichment of Formula /Formula /Formula immune evasive triple-negative breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America. 2018;115(6):E1239–E1248. [PubMed] [Google Scholar]
  59. Lo J, Lau EY, Ching RH, et al. Nuclear factor kappa B-mediated CD47 up-regulation promotes sorafenib resistance and its blockade synergizes the effect of sorafenib in hepatocellular carcinoma in mice. Hepatology. 2015;62(2):534–545. [CrossRef] [PubMed] [Google Scholar]
  60. Candas-Green D, Xie B, Huang J, et al. Dual blockade of CD47 and HER2 eliminates radioresistant breast cancer cells. Nature Communications. 2020;11(1):4591. [CrossRef] [PubMed] [Google Scholar]
  61. Virbasius CA, Virbasius JV, Scarpulla RC NRF-1, an activator involved in nuclear-mitochondrial interactions, utilizes a new DNA-binding domain conserved in a family of developmental regulators. Genes & Development. 1993;7(12A):2431–2445. [CrossRef] [PubMed] [Google Scholar]
  62. Gomezcuadrado A, Martin M, Noel M, et al. Initiation binding-receptor, a factor that binds to the transcription initiation site of the histone h5 gene, is a glycosylated member of a family of cell-growth regulators. Molecular and Cellular Biology. 1995;15(12):6670–6685. [CrossRef] [PubMed] [Google Scholar]
  63. Betancur PA, Abraham BJ, Yiu YY, et al. A CD47-associated super-enhancer links pro-inflammatory signalling to CD47 upregulation in breast cancer. Nature Communications. 2017;8:14802. [CrossRef] [PubMed] [Google Scholar]
  64. Zhang X, Wang Y, Fan J, et al. Blocking CD47 efficiently potentiated therapeutic effects of anti-angiogenic therapy in non-small cell lung cancer. Journal for ImmunoTherapy of Cancer. 2019;7(1):346. [CrossRef] [PubMed] [Google Scholar]
  65. Ye ZH, Jiang XM, Huang MY, et al. Regulation of CD47 expression by interferon-gamma in cancer cells. Translational Oncology. 2021;14(9):101162. [CrossRef] [PubMed] [Google Scholar]
  66. Sockolosky JT, Dougan M, Ingram JR, et al. Durable antitumor responses to CD47 blockade require adaptive immune stimulation. Proceedings of the National Academy of Sciences of the United States of America. 2016;113(19):E2646–E2654. [PubMed] [Google Scholar]
  67. Chen J, Zheng DX, Yu XJ, et al. Macrophages induce CD47 upregulation via IL-6 and correlate with poor survival in hepatocellular carcinoma patients. Oncoimmunology. 2019;8(11):e1652540. [CrossRef] [PubMed] [Google Scholar]
  68. Bian Z, Shi L, Guo YL, et al. Cd47-Sirpalpha interaction and IL-10 constrain inflammation-induced macrophage phagocytosis of healthy self-cells. Proceedings of the National Academy of Sciences of the United States of America. 2016;113(37):E5434–E5443. [PubMed] [Google Scholar]
  69. Shi R, Chai Y, Duan X, et al. The identification of a CD47-blocking “hotspot” and design of a CD47/PD-L1 dual-specific antibody with limited hemagglutination. Signal Transduction and Targeted Therapy. 2020;5(1):16. [CrossRef] [PubMed] [Google Scholar]
  70. Parthasarathy R, Subramanian S, Boder ET, et al. Post-translational regulation of expression and conformation of an immunoglobulin domain in yeast surface display. Biotechnology and Bioengineering. 2006;93(1):159–168. [CrossRef] [PubMed] [Google Scholar]
  71. Isenberg JS, Annis DS, Pendrak ML, et al. Differential interactions of thrombospondin-1, -2, and -4 with CD47 and effects on cGMP signaling and ischemic injury responses. Journal of Biological Chemistry. 2009;284(2):1116–1125. [CrossRef] [Google Scholar]
  72. Kaur S, Kuznetsova SA, Pendrak ML, et al. Heparan sulfate modification of the transmembrane receptor CD47 is necessary for inhibition of T cell receptor signaling by thrombospondin-1. Journal of Biological Chemistry. 2011;286(17):14991–15002. [CrossRef] [Google Scholar]
  73. Brooke GP, Parsons KR, Howard CJ, Cloning of two members of the SIRP alpha family of protein tyrosine phosphatase binding proteins in cattle that are expressed on monocytes and a subpopulation of dendritic cells and which mediate binding to CD4 T cells. European Journal of Immunology. 1998;28(1):1–11. [CrossRef] [PubMed] [Google Scholar]
  74. Barclay AN, van den Berg TK, The interaction between signal regulatory protein alpha (SIRP alpha) and CD47: structure, function, and therapeutic target. Annual Review of Immunology. 2014;32(32):25–50. [CrossRef] [PubMed] [Google Scholar]
  75. Fujioka Y, Matozaki T, Noguchi T, et al. A novel membrane glycoprotein, SHPS-1, that binds the SH2-domain-containing protein tyrosine phosphatase SHP-2 in response to mitogens and cell adhesion. Molecular and Cellular Biology. 1996;16(12):6887–6899. [CrossRef] [PubMed] [Google Scholar]
  76. Tsai RK, Discher DE, Inhibition of “self” engulfment through deactivation of myosin-II at the phagocytic synapse between human cells. Journal of Cell Biology. 2008;180(5):989–1003. [CrossRef] [PubMed] [Google Scholar]
  77. Okazawa H, Motegi S, Ohyama N, et al. Negative regulation of phagocytosis in macrophages by the CD47-SHPS-1 system. Journal of Immunology. 2005;174(4):2004–2011. [CrossRef] [PubMed] [Google Scholar]
  78. Matozaki T, Murata Y, Okazawa H, et al. Functions and molecular mechanisms of the CD47-SIRPalpha signalling pathway. Trends in Cell Biology. 2009;19(2):72–80. [CrossRef] [PubMed] [Google Scholar]
  79. Huang CY, Ye ZH, Huang MY, et al. Regulation of CD47 expression in cancer cells. Translational Oncology. 2020;13(12):100862. [CrossRef] [PubMed] [Google Scholar]
  80. Chao MP, Alizadeh AA, Tang C, et al. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell. 2010;142(5):699–713. [CrossRef] [PubMed] [Google Scholar]
  81. Chao MP, Alizadeh AA, Tang C, et al. Therapeutic antibody targeting of CD47 eliminates human acute lymphoblastic leukemia. Cancer Research. 2011;71(4):1374–1384. [CrossRef] [PubMed] [Google Scholar]
  82. Rendtlew Danielsen JM, Knudsen LM, Dahl IM, et al. Dysregulation of CD47 and the ligands thrombospondin 1 and 2 in multiple myeloma. British Journal of Haematology. 2007;138(6):756–760. [CrossRef] [PubMed] [Google Scholar]
  83. Chan KS, Espinosa I, Chao M, et al. Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(33):14016–14021. [CrossRef] [PubMed] [Google Scholar]
  84. Yoshida K, Tsujimoto H, Matsumura K, et al. CD47 is an adverse prognostic factor and a therapeutic target in gastric cancer. Cancer Medicine. 2015;4(9):1322–1333. [CrossRef] [PubMed] [Google Scholar]
  85. Willingham SB, Volkmer JP, Gentles AJ, et al. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(17):6662–6667. [CrossRef] [PubMed] [Google Scholar]
  86. Gao AG, Lindberg FP, Finn MB, et al. Integrin-associated protein is a receptor for the C-terminal domain of thrombospondin. Journal of Biological Chemistry. 1996;271(1):21–24. [CrossRef] [Google Scholar]
  87. Hatherley D, Graham SC, Turner J, et al. Paired receptor specificity explained by structures of signal regulatory proteins alone and complexed with CD47. Molecular Cell. 2008;31(2):266–277. [CrossRef] [PubMed] [Google Scholar]
  88. Ho CCM, Guo N, Sockolosky JT, et al. “Velcro” engineering of high affinity CD47 ectodomain as signal regulatory protein alpha (SIRP alpha) antagonists that enhance antibody-dependent cellular phagocytosis. Journal of Biological Chemistry. 2015;290(20):12650–12663. [CrossRef] [Google Scholar]
  89. Gillis JS Microarray evidence of glutaminyl cyclase gene expression in melanoma: implications for tumor antigen specific immunotherapy. Journal of Translational Medicine. 2006;4:27. [CrossRef] [PubMed] [Google Scholar]
  90. da Silveira Mitteldorf CA, de Sousa-Canavez JM, Leite KR, et al. FN1, GALE, MET, and QPCT overexpression in papillary thyroid carcinoma: molecular analysis using frozen tissue and routine fine-needle aspiration biopsy samples. Diagnostic Cytopathology. 2011;39(8):556–561. [CrossRef] [PubMed] [Google Scholar]
  91. Jarzab B, Wiench M, Fujarewicz K, et al. Gene expression profile of papillary thyroid cancer: sources of variability and diagnostic implications. Cancer Research. 2005;65(4):1587–1597. [CrossRef] [PubMed] [Google Scholar]
  92. Morris MR, Ricketts CJ, Gentle D, et al. Genome-wide methylation analysis identifies epigenetically inactivated candidate tumour suppressor genes in renal cell carcinoma. Oncogene. 2011;30(12):1390–1401. [CrossRef] [PubMed] [Google Scholar]
  93. Hartlage-Rubsamen M, Morawski M, Waniek A, et al. Glutaminyl cyclase contributes to the formation of focal and diffuse pyroglutamate (pGlu)-Abeta deposits in hippocampus via distinct cellular mechanisms. Acta Neuropathologica. 2011;121(6):705–719. [CrossRef] [PubMed] [Google Scholar]
  94. Morawski M, Schilling S, Kreuzberger M, et al. Glutaminyl cyclase in human cortex: correlation with (pGlu)-amyloid-beta load and cognitive decline in Alzheimer’s disease. Journal of Alzheimer's Disease. 2014;39(2):385–400. [CrossRef] [PubMed] [Google Scholar]
  95. Schilling S, Lauber T, Schaupp M, et al. On the seeding and oligomerization of pGlu-amyloid peptides (in vitro). Biochemistry. 2006;45(41):12393–12399. [CrossRef] [PubMed] [Google Scholar]
  96. D’Arrigo C, Tabaton M, Perico A, N-terminal truncated pyroglutamyl beta amyloid peptide A beta py3-42 shows a faster aggregation kinetics than the full-length A beta 1–42. Biopolymers. 2009;91(10):861–873. [CrossRef] [PubMed] [Google Scholar]
  97. Jawhar S, Wirths O, Bayer TA, Pyroglutamate amyloid-beta (Abeta): a hatchet man in Alzheimer disease. Journal of Biological Chemistry. 2011;286(45):38825–38832. [CrossRef] [Google Scholar]
  98. Bridel C, Hoffmann T, Meyer A, et al. Glutaminyl cyclase activity correlates with levels of Abeta peptides and mediators of angiogenesis in cerebrospinal fluid of Alzheimer’s disease patients. Alzheimer’s Research & Therapy. 2017;9(1):38. [CrossRef] [Google Scholar]
  99. Hartlage-Rubsamen M, Waniek A, Meissner J, et al. Isoglutaminyl cyclase contributes to CCL2-driven neuroinflammation in Alzheimer’s disease. Acta Neuropathologica. 2015;129(4):565–583. [CrossRef] [PubMed] [Google Scholar]
  100. Muthusamy V, Duraisamy S, Bradbury CM, et al. Epigenetic silencing of novel tumor suppressors in malignant melanoma. Cancer Research. 2006;66(23):11187–11193. [CrossRef] [PubMed] [Google Scholar]
  101. Schilling S, Zeitschel U, Hoffmann T, et al. Glutaminyl cyclase inhibition attenuates pyroglutamate Abeta and Alzheimer’s disease-like pathology. Nature Medicine. 2008;14(10):1106–1111. [CrossRef] [PubMed] [Google Scholar]
  102. Tang Z, Kang B, Li C, et al. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Research. 2019;47(W1):W556–W560. [CrossRef] [PubMed] [Google Scholar]
  103. Zhao T, Bao Y, Gan X, et al. DNA methylation-regulated QPCT promotes sunitinib resistance by increasing HRAS stability in renal cell carcinoma. Theranostics. 2019;9(21):6175–6190. [CrossRef] [PubMed] [Google Scholar]
  104. Mateo V, Lagneaux L, Bron D, et al. CD47 ligation induces caspase-independent cell death in chronic lymphocytic leukemia. Nature Medicine. 1999;5(11):1277–1284. [CrossRef] [PubMed] [Google Scholar]
  105. Mair B, Aldridge PM, Atwal RS, et al. High-throughput genome-wide phenotypic screening via immunomagnetic cell sorting. Nature Biomedical Engineering. 2019;3(10):796–805. [CrossRef] [PubMed] [Google Scholar]
  106. Logtenberg MEW, Glutaminyl cyclase is an enzymatic modifier of the CD47-SIRP alpha axis and target for immunotherapy. Cancer Immunology Research. 2019;7(2). [Google Scholar]
  107. Ezura Y, Kajita M, Ishida R, et al. Association of multiple nucleotide variations in the pituitary glutaminyl cyclase gene (QPCT) with low radial BMD in adult women. Journal of Bone and Mineral Metabolism. 2004;19(8):1296–1301. [CrossRef] [Google Scholar]
  108. Batliwalla FM, Baechler EC, Xiao X, et al. Peripheral blood gene expression profiling in rheumatoid arthritis. Genes & Immunity. 2005;6(5):388–397. [CrossRef] [PubMed] [Google Scholar]
  109. Hellvard A, Maresz K, Schilling S, et al. Glutaminyl cyclases as novel targets for the treatment of septic arthritis. Journal of Infectious Diseases. 2013;207(5):768–777. [CrossRef] [PubMed] [Google Scholar]
  110. Kanemitsu N, Kiyonaga F, Mizukami K, et al. Chronic treatment with the (iso-)glutaminyl cyclase inhibitor PQ529 is a novel and effective approach for glomerulonephritis in chronic kidney disease. Naunyn-Schmiedebergs Archives of Pharmacology. 2021;394(4):751–761. [CrossRef] [PubMed] [Google Scholar]
  111. Cynis H, Kehlen A, Haegele M, et al. Inhibition of glutaminyl cyclases alleviates CCL2-mediated inflammation of non-alcoholic fatty liver disease in mice. International Journal of Experimental Pathology. 2013;94(3):217–225. [PubMed] [Google Scholar]
  112. Minter MR, Taylor JM, Crack PJ, The contribution of neuroinflammation to amyloid toxicity in Alzheimer’s disease. Journal of Neurochemistry. 2016;136(3):457–474. [CrossRef] [PubMed] [Google Scholar]
  113. Thal DR, Walter J, Saido TC, et al. Neuropathology and biochemistry of Abeta and its aggregates in Alzheimer’s disease. Acta Neuropathologica. 2015;129(2):167–182. [CrossRef] [PubMed] [Google Scholar]
  114. Gunn AP, Wong BX, McLean C, et al. Increased glutaminyl cyclase activity in brains of Alzheimer’s disease individuals. Journal of Neurochemistry. 2021;156(6):979–987. [CrossRef] [PubMed] [Google Scholar]
  115. Nussbaum JM, Schilling S, Cynis H, et al. Prion-like behaviour and tau-dependent cytotoxicity of pyroglutamylated amyloid-beta. Nature. 2012;485(7400):651–655. [CrossRef] [PubMed] [Google Scholar]
  116. Schlenzig D, Manhart S, Cinar Y, et al. Pyroglutamate formation influences solubility and amyloidogenicity of amyloid peptides. Biochemistry. 2009;48(29):7072–7078. [CrossRef] [PubMed] [Google Scholar]
  117. Kuo YM, Emmerling MR, Woods AS, et al. Isolation, chemical characterization, and quantitation of A beta 3-pyroglutamyl peptide from neuritic plaques and vascular amyloid deposits. Biochemical and Biophysical Research Communications. 1997;237(1):188–191. [CrossRef] [PubMed] [Google Scholar]
  118. Wu HQ, Can small molecule inhibitors of glutaminyl cyclase be used as a therapeutic for Alzheimer’s disease?. Future Medicinal Chemistry. 2017;9(17):1979–1981. [CrossRef] [PubMed] [Google Scholar]
  119. Pivtoraiko VN, Abrahamson EE, Leurgans SE, et al. Cortical pyroglutamate amyloid-beta levels and cognitive decline in Alzheimer’s disease. Neurobiol Aging.. 2015;36(1):12–19. [CrossRef] [Google Scholar]
  120. Upadhaya AR, Kosterin I, Kumar S, et al. Biochemical stages of amyloid-beta peptide aggregation and accumulation in the human brain and their association with symptomatic and pathologically preclinical Alzheimer’s disease. Brain. 2014;137:887–903. [CrossRef] [PubMed] [Google Scholar]
  121. Moro ML, Phillips AS, Gaimster K, et al. Pyroglutamate and isoaspartate modified amyloid-Beta in ageing and Alzheimer’s disease. Acta Neuropathologica Communications. 2018;6(1):3. [CrossRef] [PubMed] [Google Scholar]
  122. Mintun MA, Lo AC, Duggan Evans C, et al. Donanemab in early Alzheimer’s disease, New England Journal of Medicine. 2021;384(18);1691–1704. [CrossRef] [PubMed] [Google Scholar]
  123. Van Manh N, Hoang VH, Ngo VTH, et al. Discovery of highly potent human glutaminyl cyclase (QC) inhibitors as anti-Alzheimer’s agents by the combination of pharmacophore-based and structure-based design. European Journal of Medicinal Chemistry. 2021;226:113819. [CrossRef] [PubMed] [Google Scholar]
  124. Bayer TA, Wirths O Focusing the amyloid cascade hypothesis on N-truncated Abeta peptides as drug targets against Alzheimer’s disease. Acta Neuropathologica. 2014;127(6):787–801. [CrossRef] [PubMed] [Google Scholar]
  125. DeMattos Ronald B., Lu J, Tang Y, et al. A plaque-specific antibody clears existing β-amyloid plaques in Alzheimer’s disease mice. Neuron. 2012;76(5):908–920. [CrossRef] [PubMed] [Google Scholar]
  126. Lowe SL, Willis BA, Hawdon A, et al. Donanemab (LY3002813) dose-escalation study in Alzheimer’s disease. Alzheimer's & Dementia (New York, NY). 2021;7(1):e12112. [Google Scholar]
  127. Gunn AP, Masters CL, Cherny RA, Pyroglutamate-Abeta: Role in the natural history of Alzheimer’s disease. International Journal of Biochemistry & Cell Biology. 2010;42(12):1915–1918. [CrossRef] [Google Scholar]
  128. Cynis H, Scheel E, Saido TC, et al. Amyloidogenic processing of amyloid precursor protein: evidence of a pivotal role of glutaminyl cyclase in generation of pyroglutamate-modified amyloid-beta. Biochemistry. 2008;47(28):7405–7413. [CrossRef] [PubMed] [Google Scholar]
  129. Saido TC, Iwatsubo T, Mann DM, et al. Dominant and differential deposition of distinct beta-amyloid peptide species, A beta N3(pE), in senile plaques. Neuron. 1995;14(2):457–466. [CrossRef] [PubMed] [Google Scholar]
  130. Coimbra JR, Sobral PJ, Santos AE, et al. An overview of glutaminyl cyclase inhibitors for Alzheimer’s disease. Future Medicinal Chemistry. 2019;11(24):3179–3194. [CrossRef] [PubMed] [Google Scholar]
  131. Jimenez-Sanchez M, Lam W, Hannus M, et al. siRNA screen identifies QPCT as a druggable target for Huntington’s disease. Nature Chemical Biology. 2015;11(5):347–354. [CrossRef] [PubMed] [Google Scholar]
  132. Srivastava M, Deal C, Osteoporosis in elderly: prevention and treatment. Clinics in Geriatric Medicine. 2002;18(3):529–555. [CrossRef] [PubMed] [Google Scholar]
  133. Gosset A, Pouilles JM, Tremollieres F Menopausal hormone therapy for the management of osteoporosis. Best Practice & Research Clinical Endocrinology & Metabolism. 2021;35(6):101551. [CrossRef] [Google Scholar]
  134. Huang QY, Kung AWC, The association of common polymorphisms in the QPCT gene with bone mineral density in the Chinese population. Journal of Human Genetics. 2007;52(9):757–762. [CrossRef] [PubMed] [Google Scholar]
  135. Xu C, Wang YN, Wu H, Glutaminyl cyclase, diseases, and development of glutaminyl cyclase inhibitors. Journal of Medicinal Chemistry. 2021;64(10):6549–6565. [CrossRef] [PubMed] [Google Scholar]
  136. Coimbra JRM, Salvador JAR, A patent review of glutaminyl cyclase inhibitors (2004-present). Expert Opinion on Therapeutic Patents. 2021;31(9):809–836. [CrossRef] [PubMed] [Google Scholar]
  137. Buchholz M, Hamann A, Aust S, et al. Inhibitors for human glutaminyl cyclase by structure based design and bioisosteric replacement. Journal of Medicinal Chemistry. 2009;52(22):7069–7080. [CrossRef] [PubMed] [Google Scholar]
  138. Ramsbeck D, Buchholz M, Koch B, et al. Structure-activity relationships of benzimidazole-based glutaminyl cyclase inhibitors featuring a heteroaryl scaffold. Journal of Medicinal Chemistry. 2013;56(17):6613–6625. [CrossRef] [PubMed] [Google Scholar]
  139. Tran PT, Hoang VH, Thorat SA, et al. Structure-activity relationship of human glutaminyl cyclase inhibitors having an N-(5-methyl-1H-imidazol-1-yl)propyl thiourea template. Bioorganic & Medicinal Chemistry. 2013;21(13):3821–3830. [CrossRef] [PubMed] [Google Scholar]
  140. Li M, Dong Y, Yu X, et al. Inhibitory effect of flavonoids on human glutaminyl cyclase. Bioorganic & Medicinal Chemistry. 2016;24(10):2280–2286. [CrossRef] [PubMed] [Google Scholar]
  141. Hoang VH, Tran PT, Cui M, et al. Discovery of potent human glutaminyl cyclase inhibitors as anti-Alzheimer’s agents based on rational design. Journal of Medicinal Chemistry. 2017;60(6):2573–2590. [CrossRef] [PubMed] [Google Scholar]
  142. Li M, Dong Y, Yu X, et al. Synthesis and evaluation of diphenyl conjugated imidazole derivatives as potential glutaminyl cyclase inhibitors for treatment of Alzheimer’s disease. Journal of Medicinal Chemistry. 2017;60(15):6664–6677. [CrossRef] [PubMed] [Google Scholar]
  143. Ngo VTH, Hoang VH, Tran PT, et al. Potent human glutaminyl cyclase inhibitors as potential anti-Alzheimer’s agents: Structure-activity relationship study of Arg-mimetic region. Bioorganic & Medicinal Chemistry. 2018;26(5):1035–1049. [CrossRef] [PubMed] [Google Scholar]
  144. Hoffmann T, Meyer A, Heiser U, et al. Glutaminyl cyclase inhibitor PQ912 improves cognition in mouse models of Alzheimer’s disease-studies on relation to effective target occupancy. Journal of Pharmacology and Experimental Therapeutics. 2017;362(1):119–130. [CrossRef] [PubMed] [Google Scholar]
  145. Manh NV, Hoang VH, Ngo VTH, et al. Discovery of potent indazole-based human glutaminyl cyclase (QC) inhibitors as Anti-Alzheimer's disease agents. European Journal of Medicinal Chemistry. 2022;244. [Google Scholar]
  146. Gulcan HO, Mavideniz A, Sahin MF, et al. Benzimidazole-derived compounds designed for different targets of Alzheimer’s disease. Current Medicinal Chemistry. 2019;26(18):3260–3278. [CrossRef] [PubMed] [Google Scholar]
  147. Ngo VTH, Hoang VH, Tran PT, et al. Structure-activity relationship investigation of Phe-Arg mimetic region of human glutaminyl cyclase inhibitors. Bioorganic & Medicinal Chemistry. 2018;26(12):3133–3144. [CrossRef] [PubMed] [Google Scholar]
  148. Lee KJ, Joo KC, Kim EJ, et al. A new type of carboxypeptidase a inhibitors designed using an imidazole as a zinc coordinating ligand. Bioorganic & Medicinal Chemistry. 1997;5(10):1989–1998. [CrossRef] [PubMed] [Google Scholar]
  149. Katz BA, Clark JM, Finer-Moore JS, et al. Design of potent selective zinc-mediated serine protease inhibitors. Nature. 1998;391(6667):608–612. [CrossRef] [PubMed] [Google Scholar]
  150. Dhanak D, Burton G, Christmann LT, et al. Metal mediated protease inhibition: Design and synthesis of inhibitors of the human cytomegalovirus (hCMV) protease. Bioorganic & Medicinal Chemistry Letters. 2000;10(20):2279–2282. [CrossRef] [PubMed] [Google Scholar]
  151. Pozzi C, Di Pisa F, Benvenuti M, et al. The structure of the human glutaminyl cyclase-SEN177 complex indicates routes for developing new potent inhibitors as possible agents for the treatment of neurological disorders. Journal of Biological Inorganic Chemistry. 2018;23(8):1219–1226. [CrossRef] [PubMed] [Google Scholar]
  152. Tran PT, Hoang VH, Lee J, et al. In vitro and in silico determination of glutaminyl cyclase inhibitors. RSC Advances. 2019;9(51):29619–29627. [CrossRef] [PubMed] [Google Scholar]
  153. DiPisa F, Pozzi C, Benvenuti M, et al. The soluble Y115E–Y117E variant of human glutaminyl cyclase is a valid target for X-ray and NMR screening of inhibitors against Alzheimer disease. Acta Crystallographica Section F-Structural Biology Communications. 2015;71:986–992. [CrossRef] [Google Scholar]
  154. Jackson I, Brooks A, Shao X, et al. Preclinical evaluation of [11C]PBD150, a glutaminyl cyclase inhibitor for the detection of Alzheimer’s disease prior to amyloid β burden. Journal of Nuclear Medicine. 2015;56(Supplement 3):1096. [Google Scholar]
  155. Huang KF, Liaw SS, Huang WL, et al. Structures of human Golgi-resident glutaminyl cyclase and its complexes with inhibitors reveal a large loop movement upon inhibitor binding. Journal of Biological Chemistry. 2011;286(14):12439–12449. [CrossRef] [Google Scholar]
  156. Brooks AF, Jackson IM, Shao X, et al. Synthesis and evaluation of [11C]PBD150, a radiolabeled glutaminyl cyclase inhibitor for the potential detection of Alzheimer’s disease prior to amyloid beta aggregation. MedChemComm. 2015;6(6):1065–1068. [CrossRef] [PubMed] [Google Scholar]
  157. Baumann N, Rosner T, Jansen JHM, et al. Enhancement of epidermal growth factor receptor antibody tumor immunotherapy by glutaminyl cyclase inhibition to interfere with CD47/signal regulatory protein alpha interactions. Cancer Science. 2021;112(8):3029–3040. [CrossRef] [PubMed] [Google Scholar]
  158. Cynis H, Funkelstein L, Toneff T, et al. Pyroglutamate-amyloid-beta and glutaminyl cyclase are colocalized with amyloid-beta in secretory vesicles and undergo activity-dependent, regulated secretion. Neurodegenerative Diseases. 2014;14(2):85–97. [CrossRef] [PubMed] [Google Scholar]
  159. Selkoe DJ, Alzheimer’s disease is a synaptic failure. Science. 2002;298(5594):789–791. [CrossRef] [PubMed] [Google Scholar]
  160. Selkoe DJ, Hardy J, The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Molecular Medicine. 2016;8(6):595–608. [CrossRef] [PubMed] [Google Scholar]
  161. Ferreira ST, Lourenco MV, Oliveira MM, et al. Soluble amyloid-beta oligomers as synaptotoxins leading to cognitive impairment in Alzheimer’s disease. Frontiers in Cellular Neuroscience. 2015;9:191. [PubMed] [Google Scholar]
  162. Lues I, Weber F, Meyer A, et al. A phase 1 study to evaluate the safety and pharmacokinetics of PQ912, a glutaminyl cyclase inhibitor, in healthy subjects. Alzheimer's & Dementia (New York, NY). 2015;1(3):182–195. [CrossRef] [Google Scholar]
  163. Briels CT, Stam CJ, Scheltens P, et al. In pursuit of a sensitive EEG functional connectivity outcome measure for clinical trials in Alzheimer’s disease. Clinical Neurophysiology. 2020;131(1):88–95. [CrossRef] [PubMed] [Google Scholar]
  164. Hoffmann T, Rahfeld JU, Schenk M, et al. Combination of the glutaminyl cyclase inhibitor PQ912 (varoglutamstat) and the murine monoclonal antibody PBD-C06 (m6) shows additive effects on brain Abeta pathology in transgenic mice, International Journal of Molecular Sciences. 2021;22(21):10354–10359. [CrossRef] [PubMed] [Google Scholar]
  165. Scheltens P, Hallikainen M, Grimmer T, et al. Safety, tolerability and efficacy of the glutaminyl cyclase inhibitor PQ912 in Alzheimer’s disease: results of a randomized, double-blind, placebo-controlled phase 2a study. Alzheimer's Research & Therapy. 2018;10(1):107. [CrossRef] [PubMed] [Google Scholar]
  166. Vijverberg EGB, Axelsen TM, Bihlet AR, et al. Rationale and study design of a randomized, placebo-controlled, double-blind phase 2b trial to evaluate efficacy, safety, and tolerability of an oral glutaminyl cyclase inhibitor varoglutamstat (PQ912) in study participants with MCI and mild AD-VIVIAD. Alzheimer's Research & Therapy. 2021;13(1):142. [CrossRef] [PubMed] [Google Scholar]
  167. Huang S, Liu Y, Zhang Y, et al. Baicalein inhibits SARS-CoV-2/VSV replication with interfering mitochondrial oxidative phosphorylation in a mPTP dependent manner. Signal Transduction and Targeted Therapy. 2020;5(1):266. [CrossRef] [PubMed] [Google Scholar]
  168. Cho JG, Song NY, Nam TG, et al. Flavonoids from the grains of C1/R-S transgenic rice, the transgenic oryza sativa spp. japonica, and their radical scavenging activities. Journal of Agricultural and Food Chemistry. 2013;61(43):10354–10359. [CrossRef] [PubMed] [Google Scholar]
  169. Nijveldt RJ, van Nood E, van Hoorn DE, et al. Flavonoids: a review of probable mechanisms of action and potential applications. American Journal of Clinical Nutrition. 2001;74(4):418–425. [CrossRef] [PubMed] [Google Scholar]
  170. Devi KP, Rajavel T, Nabavi SF, et al. Hesperidin: A promising anticancer agent from nature. Industrial Crops and Products. 2015;76:582–589. [CrossRef] [Google Scholar]
  171. Imran M, Rauf A, Abu-Izneid T, et al. Luteolin, a flavonoid, as an anticancer agent: A review (vol. 112, 108612, 2019). Biomedicine & Pharmacotherapy. 2019;116:109084. [CrossRef] [Google Scholar]
  172. Li Z, Gu X, Rao D, et al. Luteolin promotes macrophage-mediated phagocytosis by inhibiting CD47 pyroglutamation. Translational Oncology. 2021;14(8):101129. [CrossRef] [PubMed] [Google Scholar]
  173. Hielscher-Michael S, Griehl C, Buchholz M, et al. Natural products from microalgae with potential against Alzheimer’s disease: Sulfolipids are potent glutaminyl cyclase inhibitors. Marine Drugs. 2016;14(11):203. [CrossRef] [PubMed] [Google Scholar]
  174. Kennedy LB, Salama AKS, A review of cancer immunotherapy toxicity. CA: A Cancer Journal for Clinicians. 2020; 70(2):86–104. [CrossRef] [PubMed] [Google Scholar]
  175. Logtenberg MEW, Scheeren FA, Schumacher TN, The CD47-SIRPalpha immune checkpoint. Immunity. 2020;52(5):742–752. [CrossRef] [PubMed] [Google Scholar]
  176. Mantovani A, Longo DL, Macrophage checkpoint blockade in cancer – back to the future. New England Journal of Medicine. 2018;379(18):1777–1779. [CrossRef] [PubMed] [Google Scholar]
  177. van den Berg TK, Valerius T, Myeloid immune-checkpoint inhibition enters the clinical stage. Nature Reviews Clinical Oncology. 2019;16(5):275–276. [CrossRef] [PubMed] [Google Scholar]
  178. Gentles AJ, Newman AM, Liu CL, et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nature Medicine. 2015;21(8):938–945. [CrossRef] [PubMed] [Google Scholar]
  179. Liu YE, Shi YF, Mitochondria as a target in cancer treatment. MedComm. 2020;1(2):129–139. [CrossRef] [PubMed] [Google Scholar]
  180. Wang X, Chen Y, Wang X, et al. Stem cell factor SOX2 confers ferroptosis resistance in lung cancer via upregulation of SLC7A11. Cancer Research. 2021;81(20):5217–5229. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.