Open Access
Review
Issue
Vis Cancer Med
Volume 6, 2025
Article Number 12
Number of page(s) 11
DOI https://doi.org/10.1051/vcm/2025011
Published online 13 August 2025
  1. Liu N, Pan T. N6-methyladenosine-encoded epitranscriptomics. Nature Structural and Molecular Biology. 2016;23(2):98–102. [Google Scholar]
  2. Meyer KD, Saletore Y, Zumbo P, et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell. 2012;149(7):1635–1646. [Google Scholar]
  3. Wang X, Zhao BS, Roundtree IA, et al. N(6)-methyladenosine modulates messenger rna translation efficiency. Cell. 2015;161(6):1388–1399. [Google Scholar]
  4. Wang T, Kong S, Tao M, et al. The potential role of RNA N6-methyladenosine in Cancer progression. Molecular Cancer. 2020;19(1): 88. [Google Scholar]
  5. Zhang Z, Zhou D, Qiu X, et al. N6-methyladenosine-mediated EIF3H promotes anaplastic thyroid cancer progression and ferroptosis resistance by stabilizing β-catenin. Free Radical Biology and Medicine. 2025;231:38–47. [Google Scholar]
  6. Wang J, Yu H, Dong W, et al. N6-methyladenosine-mediated up-regulation of FZD10 regulates liver cancer stem cells’ properties and Lenvatinib resistance through WNT/β-catenin and hippo signaling pathways. Gastroenterology. 2023;164(6):990–1005. [Google Scholar]
  7. Chen X, Wang J, Tahir M, et al. Current insights into the implications of m6A RNA methylation and autophagy interaction in human diseases. Cell and Bioscience. 2021;11(1):147. [Google Scholar]
  8. Liu L, Li H, Hu D, et al. Insights into N6-methyladenosine and programmed cell death in cancer. Molecular Cancer. 2022;21(1):32. [Google Scholar]
  9. An Y, Duan H. The role of m6A RNA methylation in cancer metabolism. Molecular Cancer. 2022;21(1):14. [Google Scholar]
  10. Li M, Zha X, Wang S. The role of N6-methyladenosine mRNA in the tumor microenvironment. Biochimica et Biophysica Acta. Reviews on Cancer. 2021;875(2):188522. [Google Scholar]
  11. Zhuang H, Yu B, Tao D, et al. The role of m6A methylation in therapy resistance in cancer. Molecular Cancer. 2023;22(1):91. [Google Scholar]
  12. Li Y, Guo M, Qiu Y, et al. Autophagy activation is required for N6-methyladenosine modification to regulate ferroptosis in hepatocellular carcinoma. Redox biology. 2024;69:102971. [Google Scholar]
  13. Lai X, Wei J, Gu X, et al. Dysregulation of LINC00470 and METTL3 promotes chemoresistance and suppresses autophagy of chronic myelocytic leukaemia cells. Journal of Cellular and Molecular Medicine. 2021;25(9):4248–4259. [Google Scholar]
  14. Yue S, Liu H, Su H, et al. m6A-regulated tumor glycolysis: new advances in epigenetics and metabolism. Molecular Cancer. 2023;22(1):137. [Google Scholar]
  15. Yang Y, Cai J, Yang X, et al. Dysregulated m6A modification promotes lipogenesis and development of non-alcoholic fatty liver disease and hepatocellular carcinoma. Molecular Therapy. 2022;30(6):2342–2353. [Google Scholar]
  16. Dai C, Cao J, Tang Y, et al. YTHDF3 phase separation regulates HSPA13-dependent clear cell renal cell carcinoma development and immune evasion. Cancer Science. 2024;115(8):2588–2601. [Google Scholar]
  17. Bao Y, Zhai J, Chen H, et al. Targeting m(6)A reader YTHDF1 augments antitumour immunity and boosts anti-PD-1 efficacy in colorectal cancer. Gut. 2023;72(8):1497–1509. [Google Scholar]
  18. Shriwas O, Mohapatra P, Mohanty S, et al. The impact of m6A RNA modification in therapy resistance of cancer: implication in chemotherapy, radiotherapy, and immunotherapy. Frontiers in Oncology. 2020;10:612337. [Google Scholar]
  19. Jia G, Fu Y, Zhao X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nature Chemical Biology. 2011;7(12):885–887. [Google Scholar]
  20. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485(7397):201–206. [Google Scholar]
  21. He L, Li H, Wu A, et al. Functions of N6-methyladenosine and its role in cancer. Molecular Cancer. 2019;18(1):176. [Google Scholar]
  22. Liu J, Yue Y, Han D, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nature Chemical Biology. 2014;10(2):93–95. [Google Scholar]
  23. Wang X, Feng J, Xue Y, et al. Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature. 2016;534(7608):575–578. [Google Scholar]
  24. Choe J, Lin S, Zhang W, et al. mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis. Nature. 2018;561(7724):556–560. [Google Scholar]
  25. Du W, Huang Y, Chen X, et al. Discovery of a PROTAC degrader for METTL3-METTL14 complex. Cell Chemical Biology. 2024;31(1):177–183. [Google Scholar]
  26. Ping X, Sun B, Wang L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Research. 2014;24(2):177–189. [Google Scholar]
  27. Jiang X, Liu B, Nie Z, et al. The role of m6A modification in the biological functions and diseases. Signal Transduction and Targeted Therapy. 2021;6(1):74. [Google Scholar]
  28. Wang X, Huang J, Zou T, et al. Human m(6)A writers: two subunits, 2 roles. RNA Biology. 2017;14(3):300–304. [Google Scholar]
  29. Zheng G, Dahl JA, Niu Y, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Molecular Cell. 2013;49(1):18–29. [Google Scholar]
  30. Xu B, Liu D, Wang Z, et al. Multi-substrate selectivity based on key loops and non-homologous domains: new insight into ALKBH family. Cellular and Molecular Life Sciences. 2021;78(1): 129–141. [Google Scholar]
  31. Yen YP, Lung TH, Liau ES, et al. The motor neuron m6A repertoire governs neuronal homeostasis and FTO inhibition mitigates ALS symptom manifestation. Nature Communications. 2025;16(1):4063. [Google Scholar]
  32. Qu S, Feng B, Xing M, et al. PRMT5 K240lac confers ferroptosis resistance via ALKBH5/SLC7A11 axis in colorectal cancer. Oncogene. 2025. https://doi.org/10.1038/s41388-025-03457-2. [Google Scholar]
  33. Chen Z, Zhou Y, Xue C, et al. Psychological stress-induced ALKBH5 deficiency promotes tumour innervation and pancreatic cancer via extracellular vesicle transfer of RNA. Nature Cell Biology. 2025;27:1035–1047. [Google Scholar]
  34. Ueda Y, Ooshio I, Fusamae Y, et al. AlkB homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells. Scientific Reports. 2017;7:42271. [Google Scholar]
  35. Tu L, Gu S, Xu R, et al. ALKBH3-mediated M1A demethylation of METTL3 endows pathological fibrosis: interplay between M1A and M6A RNA methylation. Advanced Science (Weinheim, Baden-Württemberg, Germany). 2025;12(19):e2417067. [Google Scholar]
  36. Wang X, Lu Z, Gomez A, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014;505(7481):117–120. [Google Scholar]
  37. Liao J, Wei Y, Liang J, et al. Insight into the structure, physiological function, and role in cancer of m6A readers-YTH domain-containing proteins. Cell Death Discovery. 2022;8(1):137. [Google Scholar]
  38. Yang H, Chiang C, Luo Q, et al. YT521-B homology domain family proteins as N6-methyladenosine readers in tumors. Frontiers in Genetics. 2022;13:934223. [Google Scholar]
  39. Wang J, Lu A. The biological function of m6A reader YTHDF2 and its role in human disease. Cancer Cell International. 2021;21(1):109. [Google Scholar]
  40. Du H, Zhao Y, He J, et al. YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nature Communications. 2016;7:12626. [Google Scholar]
  41. Temme C, Zhang L, Kremmer E, et al. Subunits of the Drosophila CCR4-NOT complex and their roles in mRNA deadenylation. RNA. 2010;16(7):1356–1370. [Google Scholar]
  42. Zaccara S, Jaffrey SR. A unified model for the function of YTHDF proteins in regulating m6A-modified mRNA. Cell. 2020;181(7): 1582–1595.e18. [Google Scholar]
  43. Shi H, Wang X, Lu Z, et al. YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA. Cell Research. 2017;27(3):315–328. [Google Scholar]
  44. Zhao Y, Huang S, Tan X, et al. N(6)-Methyladenosine-modified CBX1 regulates nasopharyngeal carcinoma progression through heterochromatin formation and STAT1 activation. Advanced Science. 2022;9(36):e2205091. [Google Scholar]
  45. Xu P, Hu K, Zhang P, et al. Hypoxia-mediated YTHDF2 overexpression promotes lung squamous cell carcinoma progression by activation of the mTOR/AKT axis. Cancer Cell Int. 2022;22(1):13. [Google Scholar]
  46. Liao J, Wei Y, Liang J, et al. Insight into the structure, physiological function, and role in cancer of m6A readers-YTH domain-containing proteins. Cell Death Discovery. 2022;8(1):137. [Google Scholar]
  47. Hsu PJ, Zhu Y, Ma H, et al. Ythdc2 is an N(6)-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Research. 2017;27(9):1115–1127. [Google Scholar]
  48. Huang H, Weng H, Sun W, et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nature Cell Biology. 2018;20(3):285–295. [Google Scholar]
  49. Alarcón CR, Goodarzi H, Lee H, et al. HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell. 2015;162(6):1299–1308. [Google Scholar]
  50. Chen J, Lu T, Wang T, et al. The m6A reader HNRNPC promotes glioma progression by enhancing the stability of IRAK1 mRNA through the MAPK pathway. Cell Death and Disease. 2024;15(6):390. [Google Scholar]
  51. Rong S, Dai B, Yang C, et al. HNRNPC modulates PKM alternative splicing via m6A methylation, upregulating PKM2 expression to promote aerobic glycolysis in papillary thyroid carcinoma and drive malignant progression. Journal of Translational Medicine. 2024;22(1):914. [Google Scholar]
  52. Zhou KI, Shi H, Lyu R, et al. Regulation of co-transcriptional pre-mRNA splicing by m(6)A through the low-complexity protein hnRNPG. Molecular Cell. 2019;76(1):70–81. [Google Scholar]
  53. Liu S, Yao S, Yang H, et al. Autophagy: regulator of cell death. Cell Death and Disease. 2023;14(10):648. [Google Scholar]
  54. Mizushima N, Levine B. Autophagy in human diseases. New England Journal of Medicine. 2020;383(16):1564–1576. [Google Scholar]
  55. Leidal AM, Levine B, Debnath J. Autophagy and the cell biology of age-related disease. Nature Cell Biology. 2018;20(12):1338–1348. [Google Scholar]
  56. Saftig P, Beertsen W, Eskelinen E. LAMP-2: a control step for phagosome and autophagosome maturation. Autophagy. 2008;4(4):510–512. [Google Scholar]
  57. Li X, He S, Ma B. Autophagy and autophagy-related proteins in cancer. Molecular Cancer. 2020;19(1):12. [Google Scholar]
  58. Parzych KR, Klionsky DJ. An overview of autophagy: morphology, mechanism, and regulation. Antioxidants and Redox Signaling. 2014;20(3):460–473. [Google Scholar]
  59. Shin HR, Kim H, Kim KI, et al. Epigenetic and transcriptional regulation of autophagy. Autophagy. 2016;12(11):2248–2249. [Google Scholar]
  60. Chen X, Zhang J, Zhu J. The role of m(6)A RNA methylation in human cancer. Molecular Cancer. 2019;18(1):103. [Google Scholar]
  61. Kim YC, Guan K. mTOR: a pharmacologic target for autophagy regulation. Journal of Clinical Investigation. 2015;125(1):25–32. [Google Scholar]
  62. Liu J, Eckert MA, Harada BT, et al. m(6)A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer. Nature Cell Biology. 2018;20(9):1074–1083. [Google Scholar]
  63. Guo J, Wu Y, Du J, et al. Deregulation of UBE2C-mediated autophagy repression aggravates NSCLC progression. Oncogenesis. 2018;7(6):49. [Google Scholar]
  64. Sun Y, Shen W, Hu S, et al. METTL3 promotes chemoresistance in small cell lung cancer by inducing mitophagy. Journal of Experimental and Clinical Cancer Research. 2023;42(1):65. [Google Scholar]
  65. Lin Z, Niu Y, Wan A, et al. RNA m(6) A methylation regulates sorafenib resistance in liver cancer through FOXO3-mediated autophagy. EMBO Journal. 2020;39(12):e103181. [Google Scholar]
  66. Li Q, Ni Y, Zhang L, et al. HIF-1α-induced expression of m6A reader YTHDF1 drives hypoxia-induced autophagy and malignancy of hepatocellular carcinoma by promoting ATG2A and ATG14 translation. Signal Transduction and Targeted Therapy. 2021;6(1):76. [Google Scholar]
  67. Yu H, Zhuang J, Zhou Z, et al. METTL16 suppressed the proliferation and cisplatin-chemoresistance of bladder cancer by degrading PMEPA1 mRNA in a m6A manner through autophagy pathway. International Journal of Biological Sciences. 2024;20(4):1471–1491. [Google Scholar]
  68. Wang Y, Lu J, Wu Q, et al.. LncRNA LINRIS stabilizes IGF2BP2 and promotes the aerobic glycolysis in colorectal cancer. Molecular Cancer. 2019;18(1):174. [Google Scholar]
  69. Yang S, Wei J, Cui Y, et al. m(6)A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade. Nature Communications. 2019;10(1):2782. [Google Scholar]
  70. Morana O, Wood W, Gregory CD. The apoptosis paradox in cancer. International Journal of Molecular Sciences. 2022;23(3):1328. [Google Scholar]
  71. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674. [CrossRef] [PubMed] [Google Scholar]
  72. Yankova E, Blackaby W, Albertella M, et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature. 2021;593(7860):597–601. [Google Scholar]
  73. Yu F, Zheng S, Yu C, et al. KRAS mutants confer platinum resistance by regulating ALKBH5 posttranslational modifications in lung cancer. Journal of Clinical Investigation. 2025;135(6): e185149. [Google Scholar]
  74. Li Z, Feng Y, Han H, et al. A stapled peptide inhibitor targeting the binding interface of N6-adenosine-methyltransferase subunits METTL3 and METTL14 for cancer therapy. Angewandte Chemie International Edition. 2024;63(24):e202402611. [Google Scholar]
  75. Yang Z, Cai Z, Yang C, Luo Z, Bao X. ALKBH5 regulates STAT3 activity to affect the proliferation and tumorigenicity of osteosarcoma via an m6A-YTHDF2-dependent manner. EBioMedicine. 2022;80:104019. [Google Scholar]
  76. Guo X, Li K, Jiang W, et al. RNA demethylase ALKBH5 prevents pancreatic cancer progression by posttranscriptional activation of PER1 in an m6A-YTHDF2-dependent manner. Molecular Cancer. 2020;19(1):91. [Google Scholar]
  77. Lin Z, Wan AH, Sun L, et al. N6-methyladenosine demethylase FTO enhances chemo-resistance in colorectal cancer through SIVA1-mediated apoptosis. Molecular Therapy. 2023;31(2):517–534. [Google Scholar]
  78. Ma J, Qu X. VIRMA accelerates the tumorigenesis of prostate cancer via regulating the m6A modification of NSMCE2 to eliminate the generation of reactive oxygen species. International Journal of Urology. 2025. https://doi.org/10.1111/iju.70140. [Google Scholar]
  79. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70. [CrossRef] [PubMed] [Google Scholar]
  80. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discovery. 2022;12(1):31–46. [Google Scholar]
  81. Liberti MV, Locasale JW. The Warburg effect: how does it benefit cancer cells? Trends in Biochemical Sciences. 2016;41(3):211–218. [Google Scholar]
  82. Ding C, Yi X, Chen X, et al. Warburg effect-promoted exosomal circ_0072083 releasing up-regulates NANGO expression through multiple pathways and enhances temozolomide resistance in glioma. Journal of Experimental and Clinical Cancer Research. 2021;40(1):164. [Google Scholar]
  83. Lu S, Han L, Hu X, et al. N6-methyladenosine reader IMP2 stabilizes the ZFAS1/OLA1 axis and activates the Warburg effect: implication in colorectal cancer. Journal of Hematology and Oncology. 2021;14(1):188. [Google Scholar]
  84. Xue L, Li J, Lin Y, et al. m(6) A transferase METTL3-induced lncRNA ABHD11-AS1 promotes the Warburg effect of non-small-cell lung cancer. Journal of Cellular Physiology. 2021;236(4):2649–2658. [Google Scholar]
  85. Wang Q, Guo X, Li L, et al. N(6)-methyladenosine METTL3 promotes cervical cancer tumorigenesis and Warburg effect through YTHDF1/HK2 modification. Cell Death and Disease. 2020;11(10):911. [Google Scholar]
  86. Shen C, Xuan B, Yan T, et al. m(6)A-dependent glycolysis enhances colorectal cancer progression. Molecular Cancer. 2020;19(1):72. [Google Scholar]
  87. Yu H, Yang X, Tang J, et al. ALKBH5 inhibited cell proliferation and sensitized bladder cancer cells to cisplatin by m6A-CK2α-mediated glycolysis. Molecular Therapy: Nucleic Acids. 2021;23:27–41. [Google Scholar]
  88. Wang F, Hu Y, Wang H, et al. LncRNA FTO-IT1 promotes glycolysis and progression of hepatocellular carcinoma through modulating FTO-mediated N6-methyladenosine modification on GLUT1 and PKM2. Journal of Experimental and Clinical Cancer Research. 2023;42(1): 267. [Google Scholar]
  89. Wang A, Huang H, Shi J, et al. USP47 inhibits m6A-dependent c-Myc translation to maintain regulatory T cell metabolic and functional homeostasis. Journal of Clinical Investigation. 2023;133(23):e169365. [Google Scholar]
  90. Wang S, Zhang X, Chen Q, et al. FTO activates PD-L1 promotes immunosuppression in breast cancer via the m6A/YTHDF3/PDK1 axis under hypoxic conditions. Journal of Advanced Research. 2024. https://doi.org/10.1016/j.jare.2024.12.026. [Google Scholar]
  91. Zaidi N, Lupien L, Kuemmerle NB, et al. Lipogenesis and lipolysis: the pathways exploited by the cancer cells to acquire fatty acids. Progress in Lipid Research. 2013;52(4):585–589. [Google Scholar]
  92. Sun D, Zhao T, Zhang Q, et al. Fat mass and obesity-associated protein regulates lipogenesis via m(6) A modification in fatty acid synthase mRNA. Cell Biology International. 2021;45(2):334–344. [Google Scholar]
  93. Gao H, Zheng S, Liang J, et al. m6A-induced DEAD-box RNA helicase 21 enhances lipid metabolism via 3-hydroxy-3-methylglutaryl-CoA synthases 1 in colorectal cancer. Translational Oncology. 2025;55: 102373. [Google Scholar]
  94. Guo H, Wang B, Xu K, et al. m(6)A reader HNRNPA2B1 promotes esophageal cancer progression via up-regulation of ACLY and ACC1. Frontiers in Oncology. 2020;10:553045. [Google Scholar]
  95. Gao A, Zou J, Zeng T, et al. IGF2BP3/ESM1/KLF10/BECN1 positive feedback loop: a novel therapeutic target in ovarian cancer via lipid metabolism reprogramming. Cell Death Discovery. 2025;16(1):308. [Google Scholar]
  96. Xiao Y, Thakkar KN, Zhao H, et al. The m(6)A RNA demethylase FTO is a HIF-independent synthetic lethal partner with the VHL tumor suppressor. Proceedings of the National Academy of Sciences of the United States of America. 2020;117(35):21441–21449. [Google Scholar]
  97. Li H, Zhang Y, Guo Y, et al. ALKBH1 promotes lung cancer by regulating m6A RNA demethylation. Biochemical Pharmacology. 2021;189:114284. [Google Scholar]
  98. Mao L, Wang L, Lyu Y, et al. Branch chain amino acid metabolism promotes brain metastasis of NSCLC through EMT occurrence by regulating ALKBH5 activity. International Journal of Biological Sciences. 2024;20(9):3285–3301. [Google Scholar]
  99. Chen T, Chen J, Zeng T, et al. WZ35 inhibits gastric cancer cell metastasis by depleting glutathione to promote cellular metabolic remodeling. Cancer Lett. 2023;555:216044. [Google Scholar]
  100. Weng H, Huang F, Yu Z, et al. The m6A reader IGF2BP2 regulates glutamine metabolism and represents a therapeutic target in acute myeloid leukemia. Cancer Cell. 2022;40(12):1566–1582.e10. [Google Scholar]
  101. Gajewski TF, Schreiber H, Fu Y. Innate and adaptive immune cells in the tumor microenvironment. Nature Immunology. 2013;14(10):1014–1022. [Google Scholar]
  102. Binnewies M, Roberts EW, Kersten K, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nature Medicine. 2018;24(5):541–550. [Google Scholar]
  103. He J, Baum LG. Endothelial cell expression of galectin-1 induced by prostate cancer cells inhibits T-cell transendothelial migration. Laboratory Investigation. 2006;86(6):578–590. [Google Scholar]
  104. Ager A, Watson HA, Wehenkel SC, Mohammed RN. Homing to solid cancers: a vascular checkpoint in adoptive cell therapy using CAR T-cells. Biochemical Society Transactions i. 2016;44(2):377–385. [Google Scholar]
  105. Qian C, Liu C, Liu W, Zhou R, Zhao L. Targeting vascular normalization: a promising strategy to improve immune-vascular crosstalk in cancer immunotherapy. Frontiers in Immunology. 2023;14:1291530. [Google Scholar]
  106. Ma S, Sun B, Duan S, et al. YTHDF2 orchestrates tumor-associated macrophage reprogramming and controls antitumor immunity through CD8(+) T cells. Nature Immunology. 2023;24(2):255–266. [Google Scholar]
  107. Yin H, Zhang X, Yang P, et al. RNA m6A methylation orchestrates cancer growth and metastasis via macrophage reprogramming. Nature Communications. 2021;12(1): 1394. [Google Scholar]
  108. Han D, Liu J, Chen C, et al. Anti-tumour immunity controlled through mRNA m(6)A methylation and YTHDF1 in dendritic cells. Nature. 2019;566(7743):270–274. [Google Scholar]
  109. Wang L, Hui H, Agrawal K, et al. m(6) A RNA methyltransferases METTL3/14 regulate immune responses to anti-PD-1 therapy. EMBO Journal. 2020;39(20):e104514. [Google Scholar]
  110. Lin W, Chen L, Zhang H, et al. Tumor-intrinsic YTHDF1 drives immune evasion and resistance to immune checkpoint inhibitors via promoting MHC-I degradation. Nature Communications. 2023;14(1):265. [Google Scholar]
  111. Wan W, Ao X, Chen Q, et al. METTL3/IGF2BP3 axis inhibits tumor immune surveillance by upregulating N(6)-methyladenosine modification of PD-L1 mRNA in breast cancer. Molecular Cancer. 2022;21(1):60. [Google Scholar]
  112. Ni Z, Sun P, Zheng J, et al. JNK signaling promotes bladder cancer immune escape by regulating METTL3-mediated m6A modification of PD-L1 mRNA. Cancer Research. 2022;82(9):1789–1802. [Google Scholar]
  113. Li N, Kang Y, Wang L, et al. ALKBH5 regulates anti-PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment. Proceedings of the National Academy of Sciences of the United States of America. 2020;117(33):20159–20170. [Google Scholar]
  114. Su R, Dong L, Li Y, et al. Targeting FTO suppresses cancer stem cell maintenance and immune evasion. Cancer Cell. 2020;38(1):79–96. [Google Scholar]
  115. Ning W, Yang J, Ni R, et al. Hypoxia induced cellular and exosomal RPPH1 promotes breast cancer angiogenesis and metastasis through stabilizing the IGF2BP2/FGFR2 axis. Oncogene. 2025;44(3):147–164. [Google Scholar]
  116. Fang H, Sun Q, Zhou J, et al. m6A methylation reader IGF2BP2 activates endothelial cells to promote angiogenesis and metastasis of lung adenocarcinoma. Mol Cancer. 2023;22(1):99. [Google Scholar]
  117. Chang G, Shi L, Ye Y, et al. YTHDF3 induces the translation of m6A-enriched gene transcripts to promote breast cancer brain metastasis. Cancer Cell. 2020;38(6):857–871. [Google Scholar]
  118. Liu X, He H, Zhang F, et al. m6A methylated EphA2 and VEGFA through IGF2BP2/3 regulation promotes vasculogenic mimicry in colorectal cancer via PI3K/AKT and ERK1/2 signaling. Cell Death Discovery. 2022;13(5):483. [Google Scholar]
  119. Mukhopadhyay S, Amodeo ME, Lee ASY. eIF3d controls the persistent integrated stress response. Molecular Cell. 2023;83(18):3303–3313.e6. [Google Scholar]
  120. Nicastro G, Abis G, Klein P, et al. Direct m6A recognition by IMP1 underlays an alternative model of target selection for non-canonical methyl-readers. Nucleic Acids Research. 2023;51(16):8774–8786. [Google Scholar]
  121. Yoshida A, Oyoshi T, Suda A, Futaki S, Imanishi M. Recognition of G-quadruplex RNA by a crucial RNA methyltransferase component, METTL14. Nucleic Acids Research. 2022;50(1):449–457. [Google Scholar]
  122. Hao JD, Liu QL, Liu MX, et al. DDX21 mediates co-transcriptional RNA m6A modification to promote transcription termination and genome stability. Molecular Cell. 2024;84(9):1711–1726.e11. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.