Open Access
Issue |
Vis Cancer Med
Volume 6, 2025
|
|
---|---|---|
Article Number | 6 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/vcm/2025007 | |
Published online | 20 April 2025 |
- Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993; 75(5):843–854. [CrossRef] [PubMed] [Google Scholar]
- Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993;75(5):855–862. [CrossRef] [PubMed] [Google Scholar]
- Lee YS, Dutta A. MicroRNAs in cancer. Annual Review of Pathology. (2009);4:199–227. [CrossRef] [PubMed] [Google Scholar]
- Lauressergues D, Couzigou JM, Clemente HS, Martinez Y, Dunand C, Bécard G, et al. Primary transcripts of microRNAs encode regulatory peptides. Nature. 2015;520(7545):90–93. [CrossRef] [PubMed] [Google Scholar]
- Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R, et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(31):E2110–E2116. [PubMed] [Google Scholar]
- Matsui M, Chu Y, Zhang H, Gagnon KT, Shaikh S, Kuchimanchi S, et al. Promoter RNA links transcriptional regulation of inflammatory pathway genes. Nucleic Acids Research. 2013;41(22):10086–10109. [CrossRef] [PubMed] [Google Scholar]
- Shell S, Park SM, Radjabi AR, Schickel R, Kistner EO, Jewell DA, et al. Let-7 expression defines two differentiation stages of cancer. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(27):11400–11405. [CrossRef] [PubMed] [Google Scholar]
- Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Natature Genetics. 2007;39(5):673–677. [CrossRef] [PubMed] [Google Scholar]
- Liu Y, Li K, Zhang J, Jin L, Xu H, Duan Y. Let-7 reduces the proliferation and migration of oral cancer cells via PI3K/AKT signaling pathway. Journal of Biochemical and Molecular Toxicology. 2024;38(9):e23834. [CrossRef] [PubMed] [Google Scholar]
- Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 2007;133(2):647–658. [CrossRef] [PubMed] [Google Scholar]
- Zhang J, Bai R, Li M, Ye H, Wu C, Wang C, et al. Excessive miR-25-3p maturation via N(6)-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression. Nature Communications. 2019;10(1):1858. [CrossRef] [PubMed] [Google Scholar]
- Song Y, Li L, Ou Y, Gao Z, Li E, Li X, et al. Identification of genomic alterations in oesophageal squamous cell cancer. Nature. 2014;509(7498):91–95. [CrossRef] [PubMed] [Google Scholar]
- Madurantakam Royam M, Kumarasamy C, Baxi S, Gupta A, Ramesh N, Kodiveri Muthukaliannan G, et al. Current evidence on miRNAs as potential theranostic markers for detecting chemoresistance in colorectal cancer: a systematic review and meta-analysis of preclinical and clinical studies. Molecular Diagnosis and Therapy. 2019;23(1):65–82. [CrossRef] [PubMed] [Google Scholar]
- Zhang C, Sun C, Zhao Y, Wang Q, Guo J, Ye B, et al. Overview of MicroRNAs as diagnostic and prognostic biomarkers for high-incidence cancers in 2021. International Journal of Molecular Sciences. 2022;23(19):11389. [CrossRef] [PubMed] [Google Scholar]
- Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(30):10513–10518. [CrossRef] [PubMed] [Google Scholar]
- Wu P, Zhang C, Tang X, Li D, Zhang G, Zi X, et al. Pan-cancer characterization of cell-free immune-related miRNA identified as a robust biomarker for cancer diagnosis. Molecular Cancer 2024;23(1):31. [CrossRef] [PubMed] [Google Scholar]
- Bergamini C, Leoni I, Rizzardi N, Melli M, Galvani G, Coada CA, et al. MiR-494 induces metabolic changes through G6pc targeting and modulates sorafenib response in hepatocellular carcinoma. Journal of Experimental and Clinical Cancer Research. 2023;42(1):145. [CrossRef] [Google Scholar]
- Yuan M, Mahmud I, Katsushima K, Joshi K, Saulnier O, Pokhrel R, et al. miRNA-211 maintains metabolic homeostasis in medulloblastoma through its target gene long-chain acyl-CoA synthetase 4. Acta Neuropathologica Communications. 2023;11(1):203. [CrossRef] [PubMed] [Google Scholar]
- Oshima G, Poli EC, Bolt MJ, Chlenski A, Forde M, Jutzy JMS, et al. DNA methylation controls metastasis-suppressive 14q32-encoded miRNAs. Cancer Research. 2019;79(3):650–662. [CrossRef] [PubMed] [Google Scholar]
- Hu HF, Xu WW, Zhang WX, Yan X, Li YJ, Li B, et al. Identification of miR-515–3p and its targets, vimentin and MMP3, as a key regulatory mechanism in esophageal cancer metastasis: functional and clinical significance. Signal Transduction and Targeted Therapy. 2020;5(1):271. [CrossRef] [PubMed] [Google Scholar]
- Gilles ME, Hao L, Huang L, Rupaimoole R, Lopez-Casas PP, Pulver E, et al. Personalized RNA medicine for pancreatic cancer. Clinical Cancer Research. 2018;24(7):1734–1747. [CrossRef] [PubMed] [Google Scholar]
- Ray KK, Stoekenbroek RM, Kallend D, Nishikido T, Leiter LA, Landmesser U, et al. Effect of 1 or 2 doses of inclisiran on low-density lipoprotein cholesterol levels: one-year follow-up of the ORION-1 randomized clinical trial. JAMA Cardiology. 2019;4(11):1067–1075. [CrossRef] [PubMed] [Google Scholar]
- Ray KK, Stoekenbroek RM, Kallend D, Leiter LA, Landmesser U, Wright RS, et al. Effect of an siRNA therapeutic targeting PCSK9 on atherogenic lipoproteins: prespecified secondary end points in ORION 1. Circulation. 2018;138(13):1304–1316. [CrossRef] [PubMed] [Google Scholar]
- Ray KK, Troquay RPT, Visseren FLJ, Leiter LA, Scott Wright R, Vikarunnessa S, et al. Long-term efficacy and safety of inclisiran in patients with high cardiovascular risk and elevated LDL cholesterol (ORION-3): results from the 4-year open-label extension of the ORION-1 trial. Lancet Diabetes and Endocrinology. 2023;11(2):109–119. [CrossRef] [Google Scholar]
- Miti A, Thamm S, Müller P, Csáki A, Fritzsche W, Zuccheri G. A miRNA biosensor based on localized surface plasmon resonance enhanced by surface-bound hybridization chain reaction. Biosensors and Bioelectronics. 2020;167:112465. [CrossRef] [Google Scholar]
- Tong Z, Xu X, Shen C, Yang D, Li Y, Li Q, et al. All-in-one multiple extracellular vesicle miRNA detection on a miniaturized digital microfluidic workstation. Biosensors and Bioelectronics. 2024;270:116976. [Google Scholar]
- Bloomston M, Frankel WL, Petrocca F, Volinia S, Alder H, Hagan JP, et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA. 2007;297(17):1901–1908. [CrossRef] [PubMed] [Google Scholar]
- Ji J, Shi J, Budhu A, Yu Z, Forgues M, Roessler S, et al. MicroRNA expression, survival, and response to interferon in liver cancer. New England Journal of Medicine. 2009;361(15):1437–1447. [CrossRef] [PubMed] [Google Scholar]
- Shen X, Lin Z, Jiang X, Zhu X, Zeng S, Cai S, et al. Dumbbell probe initiated multi-rolling circle amplification assisted CRISPR/Cas12a for highly sensitive detection of clinical microRNA. Biosensors and Bioelectronics. 2024;264:116676. [CrossRef] [Google Scholar]
- Migdalska-Sęk M, Modrzewska B, Kordiak J, Pastuszak-Lewandoska D, Kiszałkiewicz JM, Bielec F, et al. Diagnostic value of PPARδ and miRNA-17 expression levels in patients with non-small cell lung cancer. Scientific Reports. 2021;11(1):24136. [CrossRef] [PubMed] [Google Scholar]
- Nie R, Niu W, Tang T, Zhang J, Zhang X. Integrating microRNA expression, miRNA-mRNA regulation network and signal pathway: a novel strategy for lung cancer biomarker discovery. PeerJ. 2021;9:e12369. [CrossRef] [PubMed] [Google Scholar]
- Yang J, Hao R, Zhang Y, Deng H, Teng W, Wang Z. Construction of circRNA-miRNA-mRNA network and identification of novel potential biomarkers for non-small cell lung cancer. Cancer Cell International. 2021;21(1):611. [CrossRef] [PubMed] [Google Scholar]
- Qin S, Xu J, Yi Y, Jiang S, Jin P, Xia X, et al. Transcription factors and methylation drive prognostic miRNA dysregulation in hepatocellular carcinoma. Frontiers in Oncology. 2021;11:691115. [CrossRef] [PubMed] [Google Scholar]
- Huang XC, Pang FX, Ou SS, Wei XJ, Xu YJ, Lai YH. Risk score based on two microRNAs as a prognostic marker of hepatocellular carcinoma and the corresponding competitive endogenous RNA network. International Journal of General Medicine. 2021;14:3377–3385. [CrossRef] [Google Scholar]
- Yu Z, Rong Z, Sheng J, Luo Z, Zhang J, Li T, et al. Aberrant non-coding RNA expressed in gastric cancer and its diagnostic value. Frontiers in Oncology. 2021;11:606764. [CrossRef] [PubMed] [Google Scholar]
- Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N, et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA. 2008;299(4):425–436. [PubMed] [Google Scholar]
- Liu Z, Lu T, Wang Y, Jiao D, Li Z, Wang L, et al. Establishment and experimental validation of an immune miRNA signature for assessing prognosis and immune landscape of patients with colorectal cancer. Journal of Cellular and Molecular Medicine. 2021;25(14):6874–6886. [CrossRef] [PubMed] [Google Scholar]
- Lan SH, Lin SC, Wang WC, Yang YC, Lee JC, Lin PW, et al. Autophagy upregulates miR-449a expression to suppress progression of colorectal cancer. Frontiers in Oncology. 2021;11:738144. [CrossRef] [PubMed] [Google Scholar]
- Lal M, Ansari AH, Agrawal A, Mukhopadhyay A. Diagnostic and prognostic potential of MiR-379/656 MicroRNA cluster in molecular subtypes of breast cancer. Journal of Clinical Medicine. 2021;10(18):4071. [CrossRef] [PubMed] [Google Scholar]
- Xing AY, Wang B, Li YH, Chen X, Wang YW, Liu HT, et al. Identification of miRNA signature in breast cancer to predict neoadjuvant chemotherapy response. Pathology Oncology Research. 2021;27:1609753. [CrossRef] [PubMed] [Google Scholar]
- Rönnau CGH, Fussek S, Smit FP, Aalders TW, van Hooij O, Pinto PMC, et al. Upregulation of miR-3195, miR-3687 and miR-4417 is associated with castration-resistant prostate cancer. World Journal of Urology. 2021;39(10):3789–3797. [CrossRef] [PubMed] [Google Scholar]
- Stoen MJ, Andersen S, Rakaee M, Pedersen MI, Ingebriktsen LM, Bremnes RM, et al. High expression of miR-17–5p in tumor epithelium is a predictor for poor prognosis for prostate cancer patients. Scientific Reports. 2021;11(1):13864. [CrossRef] [PubMed] [Google Scholar]
- Liu J, Quan Z, Gao Y, Wu X, Zheng Y. MicroRNA-199b-3p suppresses malignant proliferation by targeting Phospholipase Cε and correlated with poor prognosis in prostate cancer. Biochemical and Biophysical Research Communications. 2021;576:73–79. [CrossRef] [PubMed] [Google Scholar]
- Permuth-Wey J, Thompson RC, Burton Nabors L, Olson JJ, Browning JE, Madden MH, et al. A functional polymorphism in the pre-miR-146a gene is associated with risk and prognosis in adult glioma. Journal of Neuro-Oncology. 2011;105(3):639–646. [CrossRef] [PubMed] [Google Scholar]
- Matos B, Bostjancic E, Matjasic A, Popovic M, Glavac D. Dynamic expression of 11 miRNAs in 83 consecutive primary and corresponding recurrent glioblastoma: correlation to treatment, time to recurrence, overall survival and MGMT methylation status. Radiology and Oncology. 2018;52(4);422–432. [CrossRef] [PubMed] [Google Scholar]
- Fang L, Deng Z, Shatseva T, Yang J, Peng C, Du WW, et al. MicroRNA miR-93 promotes tumor growth and angiogenesis by targeting integrin-β8. Oncogene. 2011;30(7):806–821. [CrossRef] [PubMed] [Google Scholar]
- Li Y, Huang Y, Qi Z, Sun T, Zhou Y. MiR-338–5p promotes glioma cell invasion by regulating TSHZ3 and MMP2. Cellular and Molecular Neurobiology. 2018;38(3):669–677. [CrossRef] [PubMed] [Google Scholar]
- Ye Z, Zhang Z, Wu L, Liu C, Chen Q, Liu J, et al. Upregulation of miR-183 expression and its clinical significance in human brain glioma. Neurological Sciences. 2016;37(8):1341–1347. [CrossRef] [PubMed] [Google Scholar]
- Al-Temaimi R, Abdulkarim B, Al-Ali A, John B, Mallik MK, Kapila K. Analysis of candidate miRNAs’ expression in pancreatic cancer. Cancer Medicine. 2024;13(21):e70400. [CrossRef] [PubMed] [Google Scholar]
- Frampton AE, Giovannetti E, Jamieson NB, Krell J, Gall TM, Stebbing J, et al. A microRNA meta-signature for pancreatic ductal adenocarcinoma. Expert Review of Molecular Diagnostics. 2014;14(3):267–271. [CrossRef] [PubMed] [Google Scholar]
- Szafranska AE, Davison TS, John J, Cannon T, Sipos B, Maghnouj A, et al. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene. 2007;26(30):4442–4452. [CrossRef] [PubMed] [Google Scholar]
- Zhang W, Hong R, Li L, Wang Y, Du P, Ou Y, et al. The chromosome 11q13.3 amplification associated lymph node metastasis is driven by miR-548k through modulating tumor microenvironment. Molecular Cancer. 2018;17(1):125. [CrossRef] [PubMed] [Google Scholar]
- Lin Z, Chen Y, Lin Y, Lin H, Li H, Su X, et al. Potential miRNA biomarkers for the diagnosis and prognosis of esophageal cancer detected by a novel absolute quantitative RT-qPCR method. Scientific Reports. 2020;10(1):20065. [CrossRef] [PubMed] [Google Scholar]
- Xue J, Jia E, Ren N, Xin H. Identification of prognostic miRNA biomarkers for esophageal cancer based on the cancer genome atlas and gene expression omnibus. Medicine. 2021;100(7);e24832. [CrossRef] [PubMed] [Google Scholar]
- Schultz NA, Dehlendorff C, Jensen BV, Bjerregaard JK, Nielsen KR, Bojesen SE, et al. MicroRNA biomarkers in whole blood for detection of pancreatic cancer. JAMA. 2014;311(4):392–404. [CrossRef] [PubMed] [Google Scholar]
- Patel M, Verma A, Aslam I, Pringle H, Singh B. Novel plasma microRNA biomarkers for the identification of colitis-associated carcinoma. Lancet (London, England). 2015;385(Suppl 1):S78. [CrossRef] [PubMed] [Google Scholar]
- Hong DS, Kang YK, Borad M, Sachdev J, Ejadi S, Lim HY, et al. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. British Journal of Cancer. 2020;122(11):1630–1637. [CrossRef] [PubMed] [Google Scholar]
- Wengel J, Vester B, Lundberg LB, Douthwaite S, Sørensen MD, Babu BR, et al. LNA and alpha-L-LNA: towards therapeutic applications. Nucleosides, Nucleotides and Nucleic Acids. 2003;22(58):601–604. [CrossRef] [PubMed] [Google Scholar]
- Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, et al. Silencing of microRNAs in vivo with “antagomirs”. Nature. 2005;438(7068):685–689. [CrossRef] [PubMed] [Google Scholar]
- Khvorova A, Watts JK. The chemical evolution of oligonucleotide therapies of clinical utility. Nature Biotechnology. 2017;35(3):238–248. [CrossRef] [PubMed] [Google Scholar]
- Li LL, Xia YP, Li Q, Wang P, Sun PP, Wang XG, et al. Case report: CD7-targeted autologous CAR-T therapy for the treatment of T-cell acute lymphoblastic leukemia undergoing allogeneic peripheral blood stem cell transplantation in the long-term follow-up. Frontiers in Immunology. 2024;15:1469251. [CrossRef] [PubMed] [Google Scholar]
- Stadtmauer EA, Fraietta JA, Davis MM, Cohen AD, Weber KL, Lancaster E, et al. CRISPR-engineered T cells in patients with refractory cancer. Science (New York, NY). 2020;367(6481):eaba7365. [CrossRef] [PubMed] [Google Scholar]
- Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(12):5003–5008. [CrossRef] [PubMed] [Google Scholar]
- Ferreira R, Santos T, Amar A, Gong A, Chen TC, Tahara SM, et al. Argonaute-2 promotes miR-18a entry in human brain endothelial cells. Journal of the American Heart Association. 2014;3(3):e000968. [CrossRef] [PubMed] [Google Scholar]
- Fareh M, Almairac F, Turchi L, Burel-Vandenbos F, Paquis P, Fontaine D, et al. Cell-based therapy using miR-302-367 expressing cells represses glioblastoma growth. Cell Death and Disease. 2017;8(3):e2713. [CrossRef] [Google Scholar]
- Ashley CE, Carnes EC, Phillips GK, Durfee PN, Buley MD, Lino CA, et al. Cell-specific delivery of diverse cargos by bacteriophage MS2 virus-like particles. ACS Nano. 2011; 5(7):5729–5745. [CrossRef] [PubMed] [Google Scholar]
- Ahmed O, Krühn A, Lage H. Delivery of siRNAs to cancer cells via bacteria. Methods in Molecular Biology (Clifton, NJ). 2015;1218:117–129. [CrossRef] [PubMed] [Google Scholar]
- Chen SK, Hawley ZCE, Zavodszky MI, Hana S, Ferretti D, Grubor B, et al. Efficacy and safety of a SOD1-targeting artificial miRNA delivered by AAV9 in mice are impacted by miRNA scaffold selection Molecular Therapy Nucleic Acids. 2023;34:102057. [CrossRef] [PubMed] [Google Scholar]
- Zhang Y, Liu Q, Zhang X, Huang H, Tang S, Chai Y, et al. Recent advances in exosome-mediated nucleic acid delivery for cancer therapy. Journal of Nanobiotechnology. 2022;20(1):279. [CrossRef] [PubMed] [Google Scholar]
- Dang MN, Gomez Casas C, Day ES. Photoresponsive miR-34a/nanoshell conjugates enable light-triggered gene regulation to impair the function of triple-negative breast cancer cells. Nano Letters. 2021;21(1):68–76. [CrossRef] [PubMed] [Google Scholar]
- Yang Y, Xie X, Xu X, Xia X, Wang H, Li L, et al. Thermal and magnetic dual-responsive liposomes with a cell-penetrating peptide-siRNA conjugate for enhanced and targeted cancer therapy. Colloids and Surfaces B, Biointerfaces. 2016;146:607–615. [CrossRef] [Google Scholar]
- van Zandwijk N, Pavlakis N, Kao SC, Linton A, Boyer MJ, Clarke S, et al. Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncology. 2017;18(10):1386–1396. [CrossRef] [Google Scholar]
- Anastasiadou E, Seto AG, Beatty X, Hermreck M, Gilles ME, Stroopinsky D, et al. Cobomarsen, an oligonucleotide inhibitor of miR-155, slows DLBCL tumor cell growth in vitro and in vivo. Clinical Cancer Research. 2021;27(4):1139–1149. [CrossRef] [PubMed] [Google Scholar]
- Waldman SA, Terzic A. Translating MicroRNA discovery into clinical biomarkers in cancer. JAMA. 2007; 297(17);1923–1925. [CrossRef] [PubMed] [Google Scholar]
- Li S, Saw PE, Lin C, Nie Y, Tao W, Farokhzad OC, et al. Redox-responsive polyprodrug nanoparticles for targeted siRNA delivery and synergistic liver cancer therapy. Biomaterials. 2020;234:119760. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.