Open Access
Issue |
Vis Cancer Med
Volume 5, 2024
|
|
---|---|---|
Article Number | 8 | |
Number of page(s) | 4 | |
DOI | https://doi.org/10.1051/vcm/2024011 | |
Published online | 26 November 2024 |
- Leatherdale ST, Lee J. Artificial intelligence (AI) and cancer prevention: the potential application of AI in cancer control programming needs to be explored in population laboratories such as COMPASS. Cancer Causes Control. 2019;30:671–675. [CrossRef] [PubMed] [Google Scholar]
- Huang S, Yang J, Fong S, Zhao Q. Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges. Cancer Lett. 2020;471:61–71. [CrossRef] [PubMed] [Google Scholar]
- Jones S, Thompson K, Porter B, Shepherd M, Sapkaroski D, Grimshaw A, et al. Automation and artificial intelligence in radiation therapy treatment planning. J Med Radiat Sci. 2024;71(2):290–298. [CrossRef] [PubMed] [Google Scholar]
- El Naqa I. AI applications in radiation therapy and medical physics. In: Valdes G, Xing L, editors. Artificial intelligence in radiation oncology and biomedical physics, Boca Raton: CRC Press; 2023. p.1–23. [Google Scholar]
- Qian CN, Pezzella F, Lu Z. Revisiting and proposing the most important questions in cancer research and clinical oncology. Vis Cancer Med. 2024;5:E1. [CrossRef] [EDP Sciences] [Google Scholar]
- Overgaard J, Aznar MC, Bacchus C, Coppes RP, Deutsch E, Georg D, et al. Personalised radiation therapy taking both the tumour and patient into consideration. Radiother Oncol. 2022;166:A1–A5. [CrossRef] [PubMed] [Google Scholar]
- Le Reun E, Foray N. Low-dose radiation therapy (LDRT) against cancer and inflammatory or degenerative diseases: Three parallel stories with a common molecular mechanism involving the nucleoshuttling of the ATM protein? Cancers. 2023;15(5):1482. [CrossRef] [PubMed] [Google Scholar]
- Herrera FG, Ronet C, Ochoa de Olza M, Barras D, Crespo I, et al. Low-dose radiotherapy reverses tumor immune desertification and resistance to immunotherapy. Cancer Discov. 2022;12(1):108–133. [CrossRef] [PubMed] [Google Scholar]
- Monjazeb AM, Giobbie-Hurder A, Lako A, Thrash EM, Brennick RC, et al. A randomized trial of combined PD-L1 and CTLA-4 inhibition with targeted low-dose or hypofractionated radiation for patients with metastatic colorectal cancer. Clin Cancer Res. 2021;27(9):2470–2480. [CrossRef] [PubMed] [Google Scholar]
- Kierkels RG, Korevaar EW, Steenbakkers RJ, Janssen T, van’t Veld A, Langendijk JA, et al. Direct use of multivariable normal tissue complication probability models in treatment plan optimisation for individualised head and neck cancer radiotherapy produces clinically acceptable treatment plans. Radiother Oncol. 2014;112(3):430–436. [CrossRef] [PubMed] [Google Scholar]
- Gkikoudi A, Kalospyros SA, Triantopoulou S, Logotheti S, Softa V, Kappas C, et al. Molecular biomarkers for predicting cancer patient radiosensitivity and radiotoxicity in clinical practice. Appl Sci. 2023;13(23):12564. [CrossRef] [Google Scholar]
- Genshaft AS, Subudhi S, Keo A, Vasquez JDS, Conceição-Neto N, Mahamed D, et al. Single-cell RNA sequencing of liver fine-needle aspirates captures immune diversity in the blood and liver in chronic hepatitis B patients. Hepatology. 2023;78(5):1525–1541. [CrossRef] [PubMed] [Google Scholar]
- Kanagal-Shamanna R, Portier BP, Singh RR, Routbort MJ, Aldape KD, Handal BA, et al. Next-generation sequencing-based multi-gene mutation profiling of solid tumors using fine needle aspiration samples: promises and challenges for routine clinical diagnostics. Mod Pathol. 2014;27(2):314–327. [CrossRef] [PubMed] [Google Scholar]
- Price JM, Prabhakaran A, West CML. Predicting tumour radiosensitivity to deliver precision radiotherapy. Nat Rev Clin Oncol. 2023;20(2):83–98. [CrossRef] [PubMed] [Google Scholar]
- Landry G, Kurz C, Traverso A. The role of artificial intelligence in radiotherapy clinical practice. BJR Open. 2023;5(1):20230030. [PubMed] [Google Scholar]
- Bengs M, Sprenger J, Gerlach S, Neidhardt M, Schlaefer A. Real-time motion analysis with 4D deep learning for ultrasound-guided radiotherapy. IEEE Trans Biomed Eng. 2023;70(9):2690–2699. [CrossRef] [PubMed] [Google Scholar]
- Shao H-C, Wang J, Bai T, Chun J, Park JC, Jiang S, et al. Real-time liver tumor localization via a single X-ray projection using deep graph neural network-assisted biomechanical modeling. Phys Med Biol. 2022;67(11):115009. [CrossRef] [Google Scholar]
- Zhou D, Nakamura M, Mukumoto N, Yoshimura M, Mizowaki T. Development of a deep learning‐based patient‐specific target contour prediction model for markerless tumor positioning. Med Phys. 2022;49(3):1382–1390. [CrossRef] [PubMed] [Google Scholar]
- Muurholm CG, Ravkilde T, De Roover R, Skouboe S, Hansen R, Crijns W, et al. Experimental investigation of dynamic real‐time rotation‐including dose reconstruction during prostate tracking radiotherapy. Med Phys. 2022;49(6):3574–3584. [CrossRef] [PubMed] [Google Scholar]
- Qiu Z, Olberg S, den Hertog D, Ajdari A, Bortfeld T, Pursley J. Online adaptive planning methods for intensity-modulated radiotherapy. Phys Med Biol. 2023;68(10):10TR01. [CrossRef] [Google Scholar]
- Sun Z, Xia X, Fan J, Zhao J, Zhang K, Wang J, et al. A hybrid optimization strategy for deliverable intensity‐modulated radiotherapy plan generation using deep learning‐based dose prediction. Med Phys. 2022;49(3):1344–1356. [CrossRef] [PubMed] [Google Scholar]
- Lee D, Alam S, Jiang J, Cervino L, Hu YC, Zhang P. Seq2Morph: a deep learning deformable image registration algorithm for longitudinal imaging studies and adaptive radiotherapy. Med Phys. 2023;50(2):970–979. [CrossRef] [PubMed] [Google Scholar]
- Shirvani SM, Huntzinger CJ, Melcher T, Olcott PD, Voronenko Y, Bartlett-Roberto J, et al. Biology-guided radiotherapy: redefining the role of radiotherapy in metastatic cancer. Br J Radiol. 2021;94(1117):20200873. [CrossRef] [PubMed] [Google Scholar]
- Wang S, Mahon R, Weiss E, Jan N, Taylor RJ, McDonagh PR, Quinn B, Yuan L. Automated lung cancer segmentation using a PET and CT dual-modality deep learning neural network. Int J Radiat Oncol Biol Phys 2023;115(2):529–539. [CrossRef] [PubMed] [Google Scholar]
- Bruynzeel AM, Tetar SU, Oei SS, Senan S, Haasbeek CJ, Spoelstra FO, et al. A prospective single-arm phase 2 study of stereotactic magnetic resonance guided adaptive radiation therapy for prostate cancer: early toxicity results. Int J Radiat Oncol Biol Phys. 2019;105(5):1086–1094. [CrossRef] [PubMed] [Google Scholar]
- Glide-Hurst CK, Lee P, Yock AD, Olsen JR, Cao M, Siddiqui F, et al. Adaptive radiation therapy (ART) strategies and technical considerations: a state of the ART review from NRG oncology. Int J Radiat Oncol Biol Phys. 2021;109(4):1054–1075. [CrossRef] [PubMed] [Google Scholar]
- Krishnatry R, Bhatia J, Murthy V, Agarwal J. Survey on adaptive radiotherapy practice. Clin Oncol. 2018;30(12):819. [CrossRef] [Google Scholar]
- Brouwer CL, Steenbakkers RJ, Langendijk JA, Sijtsema NM. Identifying patients who may benefit from adaptive radiotherapy: Does the literature on anatomic and dosimetric changes in head and neck organs at risk during radiotherapy provide information to help? Radiother Oncol. 2015;115(3):285–294. [CrossRef] [PubMed] [Google Scholar]
- Castadot P, Geets X, Lee JA, Grégoire V. Adaptive functional image-guided IMRT in pharyngo-laryngeal squamous cell carcinoma: is the gain in dose distribution worth the effort? Radiother Oncol. 2011;101(3):343–350. [CrossRef] [PubMed] [Google Scholar]
- Enderling H, Alfonso JCL, Moros E, Caudell JJ, Harrison LB. Integrating mathematical modeling into the roadmap for personalized adaptive radiation therapy. Trends Cancer. 2019;5(8):467–474. [CrossRef] [PubMed] [Google Scholar]
- Matuszak MM, Kashani R, Green M, Lee C, Cao Y, Owen D, et al. Functional adaptation in radiation therapy. Semin Radiat Oncol. 2019;29(3):236–244. [CrossRef] [PubMed] [Google Scholar]
- Akhoundova D, Rubin MA. Clinical application of advanced multi-omics tumor profiling: Shaping precision oncology of the future. Cancer Cell. 2022;40(9):920–938. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.