Open Access
Review
Issue
Vis Cancer Med
Volume 5, 2024
Article Number 7
Number of page(s) 11
DOI https://doi.org/10.1051/vcm/2024008
Published online 31 July 2024
  1. Li Y, Li X, Yang J, et al. Flourish of proton and carbon ion radiotherapy in China. Frontiers in Oncology. 2022;12:819905. [CrossRef] [PubMed] [Google Scholar]
  2. Pompos A, Foote RL, Koong AC, et al. National effort to re-establish heavy ion cancer therapy in the United States. Frontiers in Oncology. 2022;12:880712. [CrossRef] [PubMed] [Google Scholar]
  3. Vanderstraeten B, Verstraete J, De Croock R, et al. In search of the economic sustainability of hadron therapy: the real cost of setting up and operating a hadron facility. International Journal of Radiation Oncology* Biology* Physics. 2014;89:152–160. [CrossRef] [Google Scholar]
  4. Peeters A, Grutters JP, Pijls-Johannesma M, et al. How costly is particle therapy? Cost analysis of external beam radiotherapy with carbon-ions, protons and photons. Radiotherapy & Oncology. 2010;95:45–53. [CrossRef] [Google Scholar]
  5. Kim J, Marti F, Blosser H. Design study of a superconducting cyclotron for heavy ion therapy. AIP Conference Proceedings, American Institute of Physics. 2001;324–326. [CrossRef] [Google Scholar]
  6. Smirnov V, Vorozhtsov S. A coupled cyclotron solution for carbon ions acceleration. In: Proceedings of the 21th international conference on cyclotrons and their applications CYCLOTRONS’16. Zurich, Switzerland; 2016. [Google Scholar]
  7. Ebina F, Umezawa M, Nishiuchi H, et al. Development of a compact synchrotron for proton beam therapy. Electronics and Communications in Japan. 2017;100:34–42. [CrossRef] [Google Scholar]
  8. Sato S, Furukawa T, Noda K. Dynamic intensity control system with rf-knockout slow-extraction in the himac synchrotron. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2007;574:226–231. [CrossRef] [Google Scholar]
  9. Younkin JE, Bues M, Sio TT, et al. Multiple energy extraction reduces beam delivery time for a synchrotron-based proton spot-scanning system. Advances in Radiation Oncology. 2018;3:412–420. [CrossRef] [PubMed] [Google Scholar]
  10. He P, Li Q, Liu X, et al. Respiratory motion management using audio-visual biofeedback for respiratory-gated radiotherapy of synchrotron-based pulsed heavy ion beam delivery. Medical Physics. 2014;41:111708. [CrossRef] [PubMed] [Google Scholar]
  11. Mandrillon J, Abs M, Cailliau P, et al. Status on nha c400 cyclotron for hadrontherapy. JACoW. 2022:264–268. [Google Scholar]
  12. Maunoury L, Velten P, Donzel X, et al. Ion source developments to supply mono & multi charged ion beams to the new nha c400 hadrontherapy system. In: Journal of physics: conference series. Victoria, BC, Canada: IOP Publishing; 2024. p. 012090. [CrossRef] [Google Scholar]
  13. Maradia V, Giovannelli AC, Meer D, et al. Increase of the transmission and emittance acceptance through a cyclotron-based proton therapy gantry. Medical Physics. 2022;49:2183–2192. [CrossRef] [PubMed] [Google Scholar]
  14. Mohan R, Bortfeld T. Proton therapy: clinical gains through current and future treatment programs. IMRT, IGRT, SBRT. 2011;43:440–464. [CrossRef] [PubMed] [Google Scholar]
  15. Noda F, Ebina F, Nishiuchi H, et al. Conceptual design of carbon/proton synchrotron for particle beam therapy. In: Proceedings of the particle accelerator conference. Vancouver, Canada; 2009. [Google Scholar]
  16. Hiramoto K, Umezawa M, Saito K, et al. The synchrotron and its related technology for ion beam therapy. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2007;261:786–790. [CrossRef] [Google Scholar]
  17. Schippers J. Beam delivery systems for particle radiation therapy: current status and recent developments. Reviews of Accelerator Science and Technology. 2009;2:179–200. [CrossRef] [Google Scholar]
  18. Zhang M, Li D, Wang K, et al. Commissioning of Shanghai advance proton therapy. In: Proceedings of the 9th international particle accelerator conference (IPAC’18). Vancouver, BC, Canada: JACoW Publishing; 2018. pp. 1151–1154. [Google Scholar]
  19. He P, Li Q. Impact of different synchrotron flattop operation modes on 4d dosimetric uncertainties for scanned carbon-ion beam delivery. Frontiers in Oncology. 2022;12:806742. [CrossRef] [PubMed] [Google Scholar]
  20. Yang W, Zhang X, Han S, et al. Magnetic field measurement for synchrotron dipole magnets of heavy-ion therapy facility in Lanzhou. IEEE Transactions on Applied Superconductivity. 2013;24:1–4. [Google Scholar]
  21. Umegaki K, Hiramoto K, Kosugi N, et al. Development of advanced proton beam therapy system for cancer treatment. Hitachi Review. 2003;52:197. [Google Scholar]
  22. Van de Walle J, Abs M, Conjat M, et al. The s2c2: from source to extraction. In: Proceedings of cyclotrons 2016. Zurich, Switzerland; 2016. [Google Scholar]
  23. Henrotin S, Abs M, Forton E, et al. Commissioning and testing of the first iba s2c2. In: Proceedings of the 21st international conference on cyclotrons and their applications (Cyclotrons-16). Zurich, Switzerland: JACoW Publishing; 2016. pp. 178–180. [Google Scholar]
  24. Kleeven W, Abs M, Forton E, et al. The iba superconducting synchrocyclotron project s2c2. Proceedings of Cyclotrons. 2013;2013:115–119. [Google Scholar]
  25. Zwart T, Cooley J, Franzen K, et al. Developing a modern, high-quality proton therapy medical device with a compact superconducting synchrocyclotron. In: Proceedings of Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMT) 2016. Madrid, Spain; 2016. [Google Scholar]
  26. Vilches-Freixas G, Unipan M, Rinaldi I, et al. Beam commissioning of the first compact proton therapy system with spot scanning and dynamic field collimation. The British Journal of Radiology. 2020;93:20190598. [CrossRef] [PubMed] [Google Scholar]
  27. Jongen Y, et al. Review on cyclotrons for cancer therapy. In: Proceedings of CYCLOTRONS, Joint Accelerator Conferences Website (JACoW). Geneva: CERN; 2010. pp. 398–403. [Google Scholar]
  28. Zaremba S, Kleeven W. Cyclotrons: magnetic design and beam dynamics. In: CERN yellow reports: school proceedings, Vol 1 (2017): Proceedings of the CAS–CERN accelerator school on accelerators for medical applications; 2017. arXiv preprint arXiv:1804.08961. [Google Scholar]
  29. Schippers J, Dölling R, Duppich J, et al. The sc cyclotron and beam lines of psi’s new protontherapy facility proscan. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2007;261:773–776. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.