Open Access
Vis Cancer Med
Volume 4, 2023
Article Number 7
Number of page(s) 7
Published online 04 July 2023
  1. Rudin CM, Brambilla E, Faivre-Finn C, Sage J, Small-cell lung cancer. Nature Reviews Disease Primers. 2021;7(1):3. [CrossRef] [PubMed] [Google Scholar]
  2. Pignon JP, Arriagada R, Ihde DC, et al., A meta-analysis of thoracic radiotherapy for small-cell lung cancer. New England Journal of Medicine. 1992;327(23):1618–1624. [CrossRef] [PubMed] [Google Scholar]
  3. Faivre-Finn C, Snee M, Ashcroft L, et al., Concurrent once-daily versus twice-daily chemoradiotherapy in patients with limited-stage small-cell lung cancer (CONVERT): an open-label, phase 3, randomised, superiority trial. Lancet Oncology. 2017;18(8):1116–1125. [CrossRef] [Google Scholar]
  4. Levy A, Hendriks LEL, Le Péchoux C, et al., Current management of limited-stage SCLC and CONVERT trial impact: Results of the EORTC Lung Cancer Group survey. Lung Cancer. 2019;136:145–147. [CrossRef] [PubMed] [Google Scholar]
  5. Hu X, Bao Y, Zhang L, et al., Omitting elective nodal irradiation and irradiating postinduction versus preinduction chemotherapy tumor extent for limited-stage small cell lung cancer: interim analysis of a prospective randomized noninferiority trial. Cancer. 2012;118(1):278–287. [CrossRef] [PubMed] [Google Scholar]
  6. Hu X, Bao Y, Xu YJ, et al., Final report of a prospective randomized study on thoracic radiotherapy target volume for limited-stage small cell lung cancer with radiation dosimetric analyses. Cancer. 2020;126(4):840–849. [CrossRef] [PubMed] [Google Scholar]
  7. Yan D, Vicini F, Wong J, et al., Adaptive radiation therapy. Physics in Medicine & Biology. 1997;42:123–132. [CrossRef] [PubMed] [Google Scholar]
  8. Brock KK, Adaptive radiotherapy: moving into the future. Seminars in Radiation Oncology. 2019;29(3):181–184. [CrossRef] [PubMed] [Google Scholar]
  9. Glide-Hurst CK, Lee P, Yock AD, et al., Adaptive Radiation Therapy (ART) strategies and technical considerations: a state of the ART review from NRG oncology. International Journal of Radiation Oncology – Biology – Physics. 2021;109(4):1054–1075. [CrossRef] [Google Scholar]
  10. Piperdi H, Portal D, Neibart SS, et al., Adaptive radiation therapy in the treatment of lung cancer: an overview of the current state of the field. Frontiers in Oncology. 2021;11, 770382. [CrossRef] [PubMed] [Google Scholar]
  11. Green OL, Henke LE, Hugo GD, Practical clinical workflows for online and offline adaptive radiation therapy. Seminars in Radiation Oncology. 2019;29(3):219–227. [CrossRef] [PubMed] [Google Scholar]
  12. Sonke JJ, Lebesque J, van Herk M, Variability of four-dimensional computed tomography patient models. International Journal of Radiation Oncology – Biology – Physics. 2008;70(2):590–598. [CrossRef] [Google Scholar]
  13. Hugo G, Vargas C, Liang J, et al., Changes in the respiratory pattern during radiotherapy for cancer in the lung. Radiotherapy & Oncology. 2006;78(3):326–331. [CrossRef] [Google Scholar]
  14. Balik S, Weiss E, Jan N, et al., Evaluation of 4-dimensional computed tomography to 4-dimensional cone-beam computed tomography deformable image registration for lung cancer adaptive radiation therapy. International Journal of Radiation Oncology – Biology – Physics. 2013;86(2):372–379. [CrossRef] [Google Scholar]
  15. Henke LE, Olsen JR, Contreras JA, et al., Stereotactic MR-Guided Online Adaptive Radiation Therapy (SMART) for ultracentral thorax malignancies: results of a phase 1 trial. Advances in Radiation Oncology. 2018;4(1):201–209. [Google Scholar]
  16. Archambault Y, Boylan C, Bullock D, et al., Making on-line adaptive radiotherapy possible using artificial intelligence and machine learning for efficient daily re-planning. Medical Physics International Journal. 2020;8(2):77–86. [Google Scholar]
  17. Winkel D, Bol GH, Kroon PS, et al., Adaptive radiotherapy: The Elekta Unity MR-linac concept. Clinical and Translational Radiation Oncology. 2019;18:54–59. [CrossRef] [PubMed] [Google Scholar]
  18. Gao L, Xie K, Wu X, et al., Generating synthetic CT from low-dose cone-beam CT by using generative adversarial networks for adaptive radiotherapy. Radiation Oncology. 2021;16(1):202. [CrossRef] [Google Scholar]
  19. Boulanger M, Nunes JC, Chourak H, et al., Deep learning methods to generate synthetic CT from MRI in radiotherapy: a literature review. Physica Medica. 2021;89:265–281. [CrossRef] [Google Scholar]
  20. Tyagi N, Fontenla S, Zelefsky M, et al., Clinical workflow for MR-only simulation and planning in prostate. Radiation Oncology. 2017;12(1):119. [CrossRef] [Google Scholar]
  21. Lei Y, Harms J, Wang T, et al., MRI-only based synthetic CT generation using dense cycle consistent generative adversarial networks. Medical Physics. 2019;46(8):3565–3581. [CrossRef] [PubMed] [Google Scholar]
  22. Yu L, Zhao J, Zhang Z, Wang J, Hu W, Commissioning of and preliminary experience with a new fully integrated computed tomography linac. Journal of Applied Clinical Medical Physics. 2021;22(7):208–223. [CrossRef] [PubMed] [Google Scholar]
  23. Yu L, Zhao J, Xia F, et al., First implementation of full-workflow automation in radiotherapy: the All-in-One solution on rectal cancer. arXiv preprint arXiv:2202.12009. 2022:1–21. [Google Scholar]
  24. Appel S, Bar J, Alezra D, et al., Image-guidance triggered adaptive replanning of radiation therapy for locally advanced lung cancer: an evaluation of cases requiring plan adaptation. British Journal of Radiology. 2020;93 (1105):20190743. [CrossRef] [PubMed] [Google Scholar]
  25. Yegya-Raman N, Kim S, Deek MP, et al., Daily image guidance with cone beam computed tomography may reduce radiation pneumonitis in unresectable non-small cell lung cancer. International Journal of Radiation Oncology – Biology – Physics. 2018;101(5):1104–1112. [CrossRef] [Google Scholar]
  26. Woodford C, Yartsev S, Dar AR, et al., Adaptive radiotherapy planning on decreasing gross tumor volumes as seen on megavoltage computed tomography images. International Journal of Radiation Oncology – Biology – Physics. 2007;69(4):1316–1322. [CrossRef] [Google Scholar]
  27. Bertelsen A, Schytte T, Bentzen SM, et al., Radiation dose response of normal lung assessed by Cone Beam CT – a potential tool for biologically adaptive radiation therapy. Radiotherapy & Oncology. 2011;100(3):351–355. [CrossRef] [Google Scholar]
  28. Yartsev S, Woodford C, Dar AR, et al., Sci-Thurs PM: Delivery-07: Evaluation of prospects to use daily megavoltage CT studies for adaptive radiotherapy. Medical Physics. 2008;35(7Part2):3400. [CrossRef] [PubMed] [Google Scholar]
  29. Koay EJ, Lege D, Mohan R, et al., Adaptive/nonadaptive proton radiation planning and outcomes in a phase II trial for locally advanced non-small cell lung cancer. International Journal of Radiation Oncology – Biology – Physics. 2012;84(5):1093–1100. [CrossRef] [Google Scholar]
  30. Chen M, Yang J, Liao Z, et al., Anatomic change over the course of treatment for non-small cell lung cancer patients and its impact on intensity-modulated radiation therapy and passive-scattering proton therapy deliveries. Radiation Oncology. 2020;15(1):55. [CrossRef] [Google Scholar]
  31. van Timmeren JE, Leijenaar RTH, van Elmpt W, et al., Feature selection methodology for longitudinal cone-beam CT radiomics. Acta Oncologica. 2017;56(11):1537–1543. [CrossRef] [PubMed] [Google Scholar]
  32. Berkovic P, Paelinck L, Lievens Y, et al., Adaptive radiotherapy for locally advanced non-small cell lung cancer, Can we predict when and for whom? Acta Oncologica. 2015;54(9):1438–1444. [CrossRef] [PubMed] [Google Scholar]
  33. Møller DS, Khalil AA, Knap MM, Hoffmann L, Adaptive radiotherapy of lung cancer patients with pleural effusion or atelectasis. Radiotherapy & Oncology. 2014;110(3):517–522. [CrossRef] [Google Scholar]
  34. Song JY, Chie EK, Kang SH, et al., Dosimetric evaluation of magnetic resonance imaging-guided adaptive radiation therapy in pancreatic cancer by extent of re-contouring of organs-at-risk. Radiation Oncology Journal. 2022;40(4):242–250. [CrossRef] [PubMed] [Google Scholar]
  35. Noel CE, Santanam L, Parikh PJ, Mutic S, Process-based quality management for clinical implementation of adaptive radiotherapy. Medical Physics. 2014;41(8), 081717. [CrossRef] [PubMed] [Google Scholar]
  36. Zhang F, Wang Q, Yang A, et al., Geometric and dosimetric evaluation of the Automatic Delineation of Organs at Risk (OARs) in non-small-cell lung cancer radiotherapy based on a modified densenet deep learning network. Frontiers in Oncology. 2022;12, 861857. [CrossRef] [PubMed] [Google Scholar]
  37. Zhang F, Wang Q, Li H, Automatic segmentation of the gross target volume in non-small cell lu ng cancer using a modified version of ResNet. Technology in Cancer Research and Treatment. 2020;19:1533033820947484. [Google Scholar]
  38. Song JY, Chie EK, Kang SH, et al., Dosimetric evaluation of magnetic resonance imaging-guided adaptive radiation therapy in pancreatic cancer by extent of re-contouring of organs-at-risk. Radiation Oncology Journal. 2022;40(4):242–250. [CrossRef] [PubMed] [Google Scholar]
  39. Cai B, Green OL, Kashani R, et al., A practical implementation of physics quality assurance for photon adaptive radiotherapy. Journal of Medical Physics. 2018;28(3):211–223. [Google Scholar]
  40. McComas KN, Yock A, Darrow K, et al., Online adaptive radiation therapy and opportunity cost. Advances in Radiation Oncology. 2022; 8(3): 101034. [Google Scholar]
  41. Kong FM, Ten Haken RK, Schipper M, et al., Effect of midtreatment PET/CT-adapted radiation therapy with concurrent chemotherapy in patients with locally advanced non-small-cell lung cancer: a phase 2 clinical trial. JAMA Oncology. 2017;3(10):1358–1365. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.