Open Access
Vis Cancer Med
Volume 4, 2023
Article Number 5
Number of page(s) 12
Published online 07 March 2023
  1. Mantovani F, Collavin L, Del Sal G. Mutant p53 as a guardian of the cancer cell. Cell Death and Differentiation. 2019;26(2):199–212. [CrossRef] [PubMed] [Google Scholar]
  2. Levine AJ, p53: 800 million years of evolution and 40 years of discovery. Nature Reviews Cancer. 2020;20(8):471–480. [CrossRef] [PubMed] [Google Scholar]
  3. Broadhurst MK, Lee RS, Hawkins S, et al. The p100 EBNA-2 coactivator: A highly conserved protein found in a range of exocrine and endocrine cells and tissues in cattle. Biochimica et Biophysica Acta. 2005;1681(2–3):126–133. [CrossRef] [PubMed] [Google Scholar]
  4. Cui X, Zhang X, Liu M, et al. A pan-cancer analysis of the oncogenic role of staphylococcal nuclease domain-containing protein 1 (SND1) in human tumors. Genomics. 2020;112(6):3958–3967. [CrossRef] [PubMed] [Google Scholar]
  5. Gan B, Chen S, Liu H, et al. Structure and function of eTudor domain containing TDRD proteins. Critical Reviews in Biochemistry and Molecular Biology. 2019;54(2):119–132. [CrossRef] [PubMed] [Google Scholar]
  6. Ying M, Chen D. Tudor domain-containing proteins of Drosophila melanogaster. Development, Growth & Differentiation. 2012;54(1):32–43. [CrossRef] [PubMed] [Google Scholar]
  7. Gutierrez-Beltran E, Denisenko TV, Zhivotovsky B, et al. Tudor staphylococcal nuclease: Biochemistry and functions. Cell Death and Differentiation. 2016;23(11):1739–1748. [CrossRef] [PubMed] [Google Scholar]
  8. Hossain MJ, Korde R, Singh S, et al. Tudor domain proteins in protozoan parasites and characterization of Plasmodium falciparum tudor staphylococcal nuclease. International Journal for Parasitology. 2008;38(5):513–526. [CrossRef] [PubMed] [Google Scholar]
  9. Phetrungnapha A, Panyim S, Ongvarrasopone C. A Tudor staphylococcal nuclease from Penaeus monodon: cDNA cloning and its involvement in RNA interference. Fish & Shellfish Immunology. 2011;31(3):373–380. [CrossRef] [PubMed] [Google Scholar]
  10. Tong X, Drapkin R, Yalamanchili R, et al. The Epstein-Barr virus nuclear protein 2 acidic domain forms a complex with a novel cellular coactivator that can interact with TFIIE. Molecular and Cellular Biology. 1995;15(9):4735–4744. [CrossRef] [PubMed] [Google Scholar]
  11. Callebaut I, Mornon JP. The human EBNA-2 coactivator p100: Multidomain organization and relationship to the staphylococcal nuclease fold and to the tudor protein involved in Drosophila melanogaster development. Biochemical Journal. 1997;321(Pt 1):125–132. [CrossRef] [PubMed] [Google Scholar]
  12. Shaw N, Zhao M, Cheng C, et al. The multifunctional human p100 protein “hooks” methylated ligands. Nature Structural & Molecular Biology. 2007;14(8):779–784. [CrossRef] [PubMed] [Google Scholar]
  13. Leverson JD, Koskinen PJ, Orrico FC, et al. Pim-1 kinase and p100 cooperate to enhance c-Myb activity. Molecular Cell. 1998;2(4):417–425. [CrossRef] [PubMed] [Google Scholar]
  14. Yang J, Aittomäki S, Pesu M, et al. Identification of p100 as a coactivator for STAT6 that bridges STAT6 with RNA polymerase II. EMBO Journal. 2002;21(18):4950–4958. [CrossRef] [Google Scholar]
  15. Välineva T, Yang J, Silvennoinen O. Characterization of RNA helicase A as component of STAT6-dependent enhanceosome. Nucleic Acids Research. 2006;34(14):3938–3946. [CrossRef] [PubMed] [Google Scholar]
  16. Välineva T, Yang J, Palovuori R, et al. The transcriptional co-activator protein p100 recruits histone acetyltransferase activity to STAT6 and mediates interaction between the CREB-binding protein and STAT6. Journal of Biological Chemistry. 2005;280(15):14989–14996. [CrossRef] [Google Scholar]
  17. Paukku K, Yang J, Silvennoinen O. Tudor and nuclease-like domains containing protein p100 function as coactivators for signal transducer and activator of transcription 5. Molecular Endocrinology (Baltimore, MD). 2003;17(9):1805–1814. [CrossRef] [PubMed] [Google Scholar]
  18. Yang J, Välineva T, Hong J, et al. Transcriptional co-activator protein p100 interacts with snRNP proteins and facilitates the assembly of the spliceosome. Nucleic Acids Research. 2007;35(13):4485–4494. [CrossRef] [PubMed] [Google Scholar]
  19. Gao X, Zhao X, Zhu Y, et al. Tudor staphylococcal nuclease (Tudor-SN) participates in small ribonucleoprotein (snRNP) assembly via interacting with symmetrically dimethylated Sm proteins. Journal of Biological Chemistry. 2012;287(22):18130–18141. [CrossRef] [Google Scholar]
  20. Li CL, Yang WZ, Chen YP, et al. Structural and functional insights into human Tudor-SN, a key component linking RNA interference and editing. Nucleic Acids Research. 2008;36(11):3579–3589. [CrossRef] [PubMed] [Google Scholar]
  21. Guo F, Wan L, Zheng A, et al. Structural insights into the tumor-promoting function of the MTDH-SND1 complex. Cell Reports. 2014;8(6):1704–1713. [CrossRef] [PubMed] [Google Scholar]
  22. Friberg A, Corsini L, Mourão A, et al. Structure and ligand binding of the extended Tudor domain of D. melanogaster Tudor-SN. Journal of Molecular Biology. 2009;387(4):921–934. [CrossRef] [PubMed] [Google Scholar]
  23. Liu H, Wang JY, Huang Y, et al. Structural basis for methylarginine-dependent recognition of Aubergine by Tudor. Genes & Development. 2010;24(17):1876–1881. [CrossRef] [PubMed] [Google Scholar]
  24. Liu K, Chen C, Guo Y, et al. Structural basis for recognition of arginine methylated Piwi proteins by the extended Tudor domain. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(43):18398–18403. [CrossRef] [PubMed] [Google Scholar]
  25. Duan Z, Zhao X, Fu X, et al. Tudor-SN, a novel coactivator of peroxisome proliferator-activated receptor γ protein, is essential for adipogenesis. Journal of Biological Chemistry. 2014;289(12):8364–8374. [CrossRef] [Google Scholar]
  26. Su C, Zhang C, Tecle A, et al. Tudor staphylococcal nuclease (Tudor-SN), a novel regulator facilitating G1/S phase transition, acting as a co-activator of E2F–1 in cell cycle regulation. Journal of Biological Chemistry. 2015;290(11):7208–7220. [CrossRef] [Google Scholar]
  27. Fu X, Wang X, Duan Z, et al. Histone H3k9 and H3k27 acetylation regulates IL-4/STAT6-mediated Igε transcription in B lymphocytes. Anatomical Record (Hoboken, NJ: 2007). 2015;298(8):1431–1439. [CrossRef] [Google Scholar]
  28. Yu L, Di Y, Xin L, et al. SND1 acts as a novel gene transcription activator recognizing the conserved Motif domains of Smad promoters, inducing TGFβ1 response and breast cancer metastasis. Oncogene. 2017;36(27):3903–3914. [CrossRef] [PubMed] [Google Scholar]
  29. Xin L, Zhao R, Lei J, et al. SND1 acts upstream of SLUG to regulate the epithelial-mesenchymal transition (EMT) in SKOV3 cells. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology. 2019;33(3):3795–3806. [CrossRef] [PubMed] [Google Scholar]
  30. Fu X, Zhang C, Meng H, et al. Oncoprotein Tudor-SN is a key determinant providing survival advantage under DNA damaging stress. Cell Death and Differentiation. 2018;25(9):1625–1637. [CrossRef] [PubMed] [Google Scholar]
  31. Yu L, Xu J, Liu J, et al. The novel chromatin architectural regulator SND1 promotes glioma proliferation and invasion and predicts the prognosis of patients. Neuro-Oncology. 2019;21(6):742–754. [CrossRef] [PubMed] [Google Scholar]
  32. Makarov EM, Makarova OV, Urlaub H, et al. Small nuclear ribonucleoprotein remodeling during catalytic activation of the spliceosome. Science (New York, NY). 2002;298(5601):2205–2208. [CrossRef] [PubMed] [Google Scholar]
  33. Sundström JF, Vaculova A, Smertenko AP, et al. Tudor staphylococcal nuclease is an evolutionarily conserved component of the programmed cell death degradome. Nature Cell Biology. 2009;11(11):1347–1354. [CrossRef] [PubMed] [Google Scholar]
  34. Bedi K, Magnuson BR, Narayanan I, et al. Co-transcriptional splicing efficiencies differ within genes and between cell types. New York, NY: RNA; 2021. [Google Scholar]
  35. Cappellari M, Bielli P, Paronetto MP, et al. The transcriptional co-activator SND1 is a novel regulator of alternative splicing in prostate cancer cells. Oncogene. 2014;33(29):3794–3802. [CrossRef] [PubMed] [Google Scholar]
  36. Thomas MG, Loschi M, Desbats MA, et al. RNA granules: The good, the bad and the ugly. Cellular Signalling. 2011;23(2):324–334. [CrossRef] [PubMed] [Google Scholar]
  37. Youn JY, Dyakov BJA, Zhang J, et al. Properties of stress granule and P-body proteomes. Molecular Cell. 2019;76(2):286–294. [CrossRef] [PubMed] [Google Scholar]
  38. Alluri RK, Li Z, McCrae KR. Stress granule-mediated oxidized RNA decay in P-body: Hypothetical role of ADAR1, Tudor-SN, and STAU1. Frontiers in Molecular Biosciences. 2021;8:672988. [CrossRef] [PubMed] [Google Scholar]
  39. Gutiérrez-Beltran E, Bozhkov PV, Moschou PN. Tudor staphylococcal nuclease plays two antagonistic roles in RNA metabolism under stress. Plant Signaling & Behavior. 2015;10(10):e1071005. [CrossRef] [PubMed] [Google Scholar]
  40. Gao X, Ge L, Shao J, et al. Tudor-SN interacts with and co-localizes with G3BP in stress granules under stress conditions. FEBS Letters. 2010;584(16):3525–3532. [CrossRef] [PubMed] [Google Scholar]
  41. Gao X, Fu X, Song J, et al. Poly(A)(+) mRNA-binding protein Tudor-SN regulates stress granules aggregation dynamics. FEBS Journal. 2015;282(5):874–890. [CrossRef] [Google Scholar]
  42. Weissbach R, Scadden AD. Tudor-SN and ADAR1 are components of cytoplasmic stress granules. RNA (New York, NY). 2012;18(3):462–471. [CrossRef] [PubMed] [Google Scholar]
  43. Su C, Gao X, Yang W, et al. Phosphorylation of Tudor-SN, a novel substrate of JNK, is involved in the efficient recruitment of Tudor-SN into stress granules. Biochimica et Biophysica Acta Molecular Cell Research. 2017;1864(3):562–571. [CrossRef] [PubMed] [Google Scholar]
  44. Gao X, Shi X, Fu X, et al. Human Tudor staphylococcal nuclease (Tudor-SN) protein modulates the kinetics of AGTR1-3′UTR granule formation. FEBS Letters. 2014;588(13):2154–2161. [CrossRef] [PubMed] [Google Scholar]
  45. Scadden AD. Inosine-containing dsRNA binds a stress-granule-like complex and downregulates gene expression in trans. Molecular Cell. 2007;28(3):491–500. [CrossRef] [PubMed] [Google Scholar]
  46. Caudy AA, Ketting RF, Hammond SM, et al. A micrococcal nuclease homologue in RNAi effector complexes. Nature. 2003;425(6956):411–414. [CrossRef] [PubMed] [Google Scholar]
  47. Musiyenko A, Majumdar T, Andrews J, et al. PRMT1 methylates the single Argonaute of Toxoplasma gondii and is important for the recruitment of Tudor nuclease for target RNA cleavage by antisense guide RNA. Cellular Microbiology. 2012;14(6):882–901. [CrossRef] [PubMed] [Google Scholar]
  48. Murashov AK, Chintalgattu V, Islamov RR, et al. RNAi pathway is functional in peripheral nerve axons. FASEB Journal: Official publication of the Federation of American Societies for Experimental Biology. 2007;21(3):656–670. [CrossRef] [PubMed] [Google Scholar]
  49. Schwarz DS, Tomari Y, Zamore PD. The RNA-induced silencing complex is a Mg2+-dependent endonuclease. Current Biology: CB. 2004;14(9):787–791. [CrossRef] [Google Scholar]
  50. Frei dit Frey N, Muller P, Jammes F, et al. The RNA binding protein Tudor-SN is essential for stress tolerance and stabilizes levels of stress-responsive mRNAs encoding secreted proteins in Arabidopsis. Plant Cell. 2010;22(5):1575–1591. [CrossRef] [PubMed] [Google Scholar]
  51. Alsford S, Kemp LE, Kawahara T, et al. RNA interference, growth and differentiation appear normal in African trypanosomes lacking Tudor staphylococcal nuclease. Molecular and Biochemical Parasitology. 2010;174(1):70–73. [CrossRef] [PubMed] [Google Scholar]
  52. Howard-Till RA, Yao MC. Tudor nuclease genes and programmed DNA rearrangements in Tetrahymena thermophila. Eukaryotic Cell. 2007;6(10):1795–1804. [CrossRef] [PubMed] [Google Scholar]
  53. Milochau A, Lagrée V, Benassy MN, et al. Synaptotagmin 11 interacts with components of the RNA-induced silencing complex RISC in clonal pancreatic β-cells. FEBS Letters. 2014;588(14):2217–2222. [CrossRef] [PubMed] [Google Scholar]
  54. Ayllón N, Naranjo V, Hajdušek O, et al. Nuclease Tudor-SN is involved in tick dsRNA-mediated RNA interference and feeding but not in defense against flaviviral or Anaplasma phagocytophilum Rickettsial infection. PloS One. 2015;10(7):e0133038. [CrossRef] [PubMed] [Google Scholar]
  55. Merkling SH, Raquin V, Dabo S, et al. Tudor-SN promotes early replication of dengue virus in the Aedes aegypti midgut. iScience. 2020;23(2):100870. [CrossRef] [PubMed] [Google Scholar]
  56. Phetrungnapha A, Panyim S, Ongvarrasopone C. Penaeus monodon Tudor staphylococcal nuclease preferentially interacts with N-terminal domain of Argonaute-1. Fish & Shellfish Immunology. 2013;34(3):875–884. [CrossRef] [PubMed] [Google Scholar]
  57. Nishikura K. A-to-I editing of coding and non-coding RNAs by ADARs. Nature Reviews Molecular Cell Biology. 2016;17(2):83–96. [CrossRef] [PubMed] [Google Scholar]
  58. Stanisławska J, Olszewski WL. RNA interference–significance and applications. Archivum Immunologiae et Therapiae Experimentalis. 2005;53(1):39–46. [PubMed] [Google Scholar]
  59. Knight SW, Bass BL. The role of RNA editing by ADARs in RNAi. Molecular Cell. 2002;10(4):809–817. [CrossRef] [PubMed] [Google Scholar]
  60. Nishikura K. Editor meets silencer: Crosstalk between RNA editing and RNA interference. Nature Reviews Molecular Cell Biology. 2006;7(12):919–931. [CrossRef] [PubMed] [Google Scholar]
  61. Yang W, Chendrimada TP, Wang Q, et al. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nature Structural & Molecular Biology. 2006;13(1):13–21. [CrossRef] [PubMed] [Google Scholar]
  62. Scadden AD. The RISC subunit Tudor-SN binds to hyper-edited double-stranded RNA and promotes its cleavage. Nature Structural & Molecular Biology. 2005;12(6):489–496. [CrossRef] [PubMed] [Google Scholar]
  63. Jiang Q, Crews LA, Holm F, et al. RNA editing-dependent epitranscriptome diversity in cancer stem cells. Nature Reviews Cancer. 2017;17(6):381–392. [CrossRef] [PubMed] [Google Scholar]
  64. Elbarbary RA, Miyoshi K, Hedaya O, et al. UPF1 helicase promotes TSN-mediated miRNA decay. Genes & Development. 2017;31(14):1483–1493. [CrossRef] [PubMed] [Google Scholar]
  65. Elbarbary RA, Miyoshi K, Myers JR, et al. Tudor-SN-mediated endonucleolytic decay of human cell microRNAs promotes G(1)/S phase transition. Science (New York, NY). 2017;356(6340):859–862. [CrossRef] [PubMed] [Google Scholar]
  66. Ochoa B, Chico Y, Martínez MJ. Insights into SND1 oncogene promoter regulation. Frontiers in Oncology. 2018;8:606. [CrossRef] [PubMed] [Google Scholar]
  67. Quintana AM, Liu F, O’Rourke JP, et al. Identification and regulation of c-Myb target genes in MCF-7 cells. BMC Cancer. 2011;11:30. [CrossRef] [PubMed] [Google Scholar]
  68. Rodríguez L, Bartolomé N, Ochoa B, et al. Isolation and characterization of the rat SND p102 gene promoter: Putative role for nuclear factor-Y in regulation of transcription. Annals of the New York Academy of Sciences. 2006;1091:282–295. [CrossRef] [PubMed] [Google Scholar]
  69. Rodríguez L, Ochoa B, Martínez MJ. NF-Y and Sp1 are involved in transcriptional regulation of rat SND p102 gene. Biochemical and Biophysical Research Communications. 2007;356(1):226–232. [CrossRef] [PubMed] [Google Scholar]
  70. Armengol S, Arretxe E, Rodríguez L, et al. NF-κB, Sp1 and NF-Y as transcriptional regulators of human SND1 gene. Biochimie. 2013;95(4):735–742. [CrossRef] [PubMed] [Google Scholar]
  71. Armengol S, Arretxe E, Enzunza L, et al. SREBP-2-driven transcriptional activation of human SND1 oncogene. Oncotarget. 2017;8(64):108181–108194. [CrossRef] [PubMed] [Google Scholar]
  72. Navarro-Imaz H, Ochoa B, García-Arcos I, et al. Molecular and cellular insights into the role of SND1 in lipid metabolism. Biochimica et Biophysica Acta Molecular and Cell Biology of Lipids. 2020;1865(5):158589. [CrossRef] [PubMed] [Google Scholar]
  73. Yu L, Liu X, Cui K, et al. SND1 Acts downstream of TGFβ1 and upstream of Smurf1 to promote breast cancer metastasis. Cancer Research. 2015;75(7):1275–1286. [CrossRef] [PubMed] [Google Scholar]
  74. Armengol S, Arretxe E, Enzunza L, et al. The promoter of cell growth- and RNA protection-associated SND1 gene is activated by endoplasmic reticulum stress in human hepatoma cells. BMC Biochemistry. 2014;15:25. [CrossRef] [PubMed] [Google Scholar]
  75. Ao J, Wei C, Si Y, et al. Tudor-SN regulates milk synthesis and proliferation of bovine mammary epithelial cells. International Journal of Molecular Sciences. 2015;16(12):29936–29947. [CrossRef] [PubMed] [Google Scholar]
  76. Gan S, Su C, Ma J, et al. Translation of Tudor-SN, a novel terminal oligo-pyrimidine (TOP) mRNA, is regulated by the mTORC1 pathway in cardiomyocytes. RNA Biology. 2020;18(6):900–913. [Google Scholar]
  77. Li P, He Y, Chen T, et al. Disruption of SND1-MTDH interaction by a high affinity peptide results in SND1 degradation and cytotoxicity to breast cancer cells in vitro and in vivo. Molecular Cancer Therapeutics. 2021;20(1):76–84. [CrossRef] [PubMed] [Google Scholar]
  78. Wan L, Lu X, Yuan S, et al. MTDH-SND1 interaction is crucial for expansion and activity of tumor-initiating cells in diverse oncogene- and carcinogen-induced mammary tumors. Cancer Cell. 2014;26(1):92–105. [CrossRef] [PubMed] [Google Scholar]
  79. Emdad L, Janjic A, Alzubi MA, et al. Suppression of miR-184 in malignant gliomas upregulates SND1 and promotes tumor aggressiveness. Neuro-Oncology. 2015;17(3):419–429. [CrossRef] [PubMed] [Google Scholar]
  80. Ma F, Song H, Guo B, et al. MiR-361-5p inhibits colorectal and gastric cancer growth and metastasis by targeting staphylococcal nuclease domain containing-1. Oncotarget. 2015;6(19):17404–17416. [CrossRef] [PubMed] [Google Scholar]
  81. Xing A, Pan L, Gao J. p100 functions as a metastasis activator and is targeted by tumor suppressing microRNA-320a in lung cancer. Thoracic Cancer. 2018;9(1):152–158. [CrossRef] [PubMed] [Google Scholar]
  82. Wu W, Yu A, Chen K, et al. The oncogene PIM1 contributes to cellular senescence by phosphorylating staphylococcal nuclease domain-containing protein 1 (SND1). Medical Science Monitor: International Medical Journal of Experimental and Clinical Research. 2019;25:8651–8659. [Google Scholar]
  83. Ouyang J, Shi Y, Valin A, et al. Direct binding of CoREST1 to SUMO-2/3 contributes to gene-specific repression by the LSD1/CoREST1/HDAC complex. Molecular Cell. 2009;34(2):145–154. [CrossRef] [PubMed] [Google Scholar]
  84. Blanco MA, Alečković M, Hua Y, et al. Identification of staphylococcal nuclease domain-containing 1 (SND1) as a Metadherin-interacting protein with metastasis-promoting functions. Journal of Biological Chemistry. 2011;286(22):19982–19992. [CrossRef] [Google Scholar]
  85. Tong L, Wang C, Hu X, et al. Correlated overexpression of metadherin and SND1 in glioma cells. Biological Chemistry. 2016;397(1):57–65. [CrossRef] [PubMed] [Google Scholar]
  86. Liu X, Dong L, Zhang X, et al. Identification of p100 target promoters by chromatin immunoprecipitation-guided ligation and selection (ChIP-GLAS). Cellular & Molecular Immunology. 2011;8(1):88–91. [CrossRef] [PubMed] [Google Scholar]
  87. Jariwala N, Rajasekaran D, Mendoza RG, et al. Oncogenic role of SND1 in development and progression of hepatocellular carcinoma. Cancer Research. 2017;77(12):3306–3316. [CrossRef] [PubMed] [Google Scholar]
  88. Santhekadur PK, Das SK, Gredler R, et al. Multifunction protein staphylococcal nuclease domain containing 1 (SND1) promotes tumor angiogenesis in human hepatocellular carcinoma through novel pathway that involves nuclear factor κB and miR-221. Journal of Biological Chemistry. 2012;287(17):13952–13958. [CrossRef] [Google Scholar]
  89. Arretxe E, Armengol S, Mula S, et al. Profiling of promoter occupancy by the SND1 transcriptional coactivator identifies downstream glycerolipid metabolic genes involved in TNFα response in human hepatoma cells. Nucleic Acids Research. 2015;43(22):10673–10688. [CrossRef] [PubMed] [Google Scholar]
  90. Rajasekaran D, Jariwala N, Mendoza RG, et al. Staphylococcal nuclease and Tudor domain containing 1 (SND1 protein) promotes hepatocarcinogenesis by inhibiting monoglyceride lipase (MGLL). Journal of Biological Chemistry. 2016;291(20):10736–10746. [CrossRef] [Google Scholar]
  91. Zhang Y, Jia J, Li Y, et al. Tudor-staphylococcal nuclease regulates the expression and biological function of alkylglycerone phosphate synthase via nuclear factor-κB and microRNA-127 in human glioma U87MG cells. Oncology Letters. 2018;15(6):9553–9558. [PubMed] [Google Scholar]
  92. Tsuchiya N, Ochiai M, Nakashima K, et al. SND1, a component of RNA-induced silencing complex, is up-regulated in human colon cancers and implicated in early stage colon carcinogenesis. Cancer Research. 2007;67(19):9568–9576. [CrossRef] [PubMed] [Google Scholar]
  93. Cui X, Zhao C, Yao X, et al. SND1 acts as an anti-apoptotic factor via regulating the expression of lncRNA UCA1 in hepatocellular carcinoma. RNA Biology. 2018;15(10):1364–1375. [CrossRef] [PubMed] [Google Scholar]
  94. Zagryazhskaya A, Surova O, Akbar NS, et al. Tudor staphylococcal nuclease drives chemoresistance of non-small cell lung carcinoma cells by regulating S100A11. Oncotarget. 2015;6(14):12156–12173. [CrossRef] [PubMed] [Google Scholar]
  95. Yao X, Zhai M, Zhou L, et al. Protective effects of SND1 in retinal photoreceptor cell damage induced by ionizing radiation. Biochemical and Biophysical Research Communications. 2019;514(3):919–925. [CrossRef] [PubMed] [Google Scholar]
  96. Lehmusvaara S, Haikarainen T, Saarikettu J, et al. Inhibition of RNA binding in SND1 increases the levels of miR-1-3p and sensitizes cancer cells to Navitoclax. Cancers (Basel). 2022;14(13):3100. [CrossRef] [PubMed] [Google Scholar]
  97. Cuatrecasas P, Fuchs S, Anfinsen CB. The binding of nucleotides and calcium to the extracellular nuclease of Staphylococcus aureus. Studies by gel filtration. Journal of Biological Chemistry. 1967;242(13):3063–3067. [CrossRef] [Google Scholar]
  98. Wei Y, Sandhu E, Yang X, et al. Bidirectional functional effects of staphylococcus on carcinogenesis. Microorganisms. 2022;10(12):2353. [CrossRef] [PubMed] [Google Scholar]
  99. Yoo BK, Santhekadur PK, Gredler R, et al. Increased RNA-induced silencing complex (RISC) activity contributes to hepatocellular carcinoma. Hepatology (Baltimore, MD). 2011;53(5):1538–1548. [CrossRef] [Google Scholar]
  100. Wang Y, Wang X, Cui X, et al. Oncoprotein SND1 hijacks nascent MHC-I heavy chain to ER-associated degradation, leading to impaired CD8(+) T cell response in tumor. Science Advances. 2020;6(22):eaba5412. [CrossRef] [PubMed] [Google Scholar]
  101. Wang X, Zhang C, Wang S, et al. SND1 promotes Th1/17 immunity against chlamydial lung infection through enhancing dendritic cell function. PLoS Pathogens. 2021;17(2):e1009295. [CrossRef] [PubMed] [Google Scholar]
  102. Chidambaranathan-Reghupaty S, Mendoza R, Fisher PB, et al. The multifaceted oncogene SND1 in cancer: Focus on hepatocellular carcinoma. Hepatoma Research. 2018;4:32. [CrossRef] [PubMed] [Google Scholar]
  103. Hessam S, Sand M, Skrygan M, et al. The microRNA effector RNA-induced silencing complex in hidradenitis suppurativa: A significant dysregulation within active inflammatory lesions. Archives of Dermatological Research. 2017;309(7):557–565. [CrossRef] [PubMed] [Google Scholar]
  104. Kannan N, Eaves CJ. Tipping the balance: MTDH-SND1 curbs oncogene-induced apoptosis and promotes tumorigenesis. Cell Stem Cell. 2014;15(2):118–120. [CrossRef] [PubMed] [Google Scholar]
  105. Shen M, Smith HA, Wei Y, et al. Pharmacological disruption of the MTDH-SND1 complex enhances tumor antigen presentation and synergizes with anti-PD-1 therapy in metastatic breast cancer. Nature Cancer. 2022;3(1):60–74. [Google Scholar]
  106. Sarkar D. AEG-1/MTDH/LYRIC in liver cancer. Advances in Cancer Research. 2013;120:193–221. [CrossRef] [PubMed] [Google Scholar]
  107. Paukku K, Kalkkinen N, Silvennoinen O, et al. p100 increases AT1R expression through interaction with AT1R 3′-UTR. Nucleic Acids Research. 2008;36(13):4474–4487. [CrossRef] [PubMed] [Google Scholar]
  108. Xu JL, Gan XX, Ni J, et al. SND p102 promotes extracellular matrix accumulation and cell proliferation in rat glomerular mesangial cells via the AT1R/ERK/Smad3 pathway. Acta Pharmacologica Sinica. 2018;39(9):1513–1521. [CrossRef] [PubMed] [Google Scholar]
  109. Santhekadur PK, Akiel M, Emdad L, et al. Staphylococcal nuclease domain containing-1 (SND1) promotes migration and invasion via angiotensin II type 1 receptor (AT1R) and TGFβ signaling. FEBS Open Bio. 2014;4:353–361. [CrossRef] [PubMed] [Google Scholar]
  110. Yoshiji H, Noguchi R, Ikenaka Y, et al. Renin-angiotensin system inhibitors as therapeutic alternatives in the treatment of chronic liver diseases. Current Medical Chemistry. 2007;14(26):2749–2754. [CrossRef] [Google Scholar]
  111. Magini P, Scarano E, Donati I, et al. Challenges in the clinical interpretation of small de novo copy number variants in neurodevelopmental disorders. Gene. 2019;706:162–171. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.