Open Access
Vis Cancer Med
Volume 4, 2023
Article Number 4
Number of page(s) 10
Published online 13 January 2023
  1. Hynes RO, Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110:673–687. [CrossRef] [PubMed] [Google Scholar]
  2. Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I, Multiscale simulations of biological membranes: the challenge to understand biological phenomena in a living substance. Chemical Reviews. 2019;119:5607–5774. [CrossRef] [PubMed] [Google Scholar]
  3. Kossatz S, Beer AJ, Notni J, It’s time to shift the paradigm: translation and clinical application of non-αvβ3 integrin targeting radiopharmaceuticals. Cancers. 2021;13:5958. [CrossRef] [PubMed] [Google Scholar]
  4. Takada Y, Ye X, Simon S, The integrins. Genome Biol. 2007;8:215. [CrossRef] [PubMed] [Google Scholar]
  5. Hynes RO, Integrins: A family of cell surface receptors. Cell. 1987;48:549–554. [CrossRef] [PubMed] [Google Scholar]
  6. Becchetti A, Arcangeli A, Integrins and ion channels in cell migration: implications for neuronal development, wound healing and metastatic spread. Advances in Experimental Medicine and Biology. 2010;674:107–123. [CrossRef] [PubMed] [Google Scholar]
  7. Hanahan D, Weinberg RA, Hallmarks of cancer: the next generation. Cell. 2011;144:646–674. [CrossRef] [PubMed] [Google Scholar]
  8. Desgrosellier JS, Cheresh DA, Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010;10:9–22. [CrossRef] [PubMed] [Google Scholar]
  9. Cayrol F, Sterle HA, Díaz Flaqué MC, Barreiro Arcos ML, Cremaschi GA, Non-genomic actions of thyroid hormones regulate the growth and angiogenesis of T Cell lymphomas. Frontiers in Endocrinology (Lausanne). 2019;10:63. [CrossRef] [Google Scholar]
  10. Carpenter BL, Chen M, Knifley T, Davis KA, Harrison SMW, Stewart RL, et al. Integrin α6β4 promotes autocrine Epidermal Growth Factor Receptor (EGFR) signaling to stimulate migration and invasion toward Hepatocyte Growth Factor (HGF). The Journal of Biological Chemistry. 2015;290:27228–27238. [CrossRef] [PubMed] [Google Scholar]
  11. Nieberler M, Reuning U, Reichart F, Notni J, Wester HJ, Schwaiger M, et al. Exploring the role of RGD-recognizing integrins in cancer. Cancers. 2017;9. [PubMed] [Google Scholar]
  12. Pignatelli M, Stamp G, Integrins in tumour development and spread. Cancer Surveys. 1995;24:113–127. [PubMed] [Google Scholar]
  13. Ye Y, Chen X, Integrin targeting for tumor optical imaging. Theranostics. 2011;1:102–126. [CrossRef] [PubMed] [Google Scholar]
  14. Chen X, Integrin targeted imaging and therapy. Theranostics. 2011;2011:28–29. [CrossRef] [Google Scholar]
  15. Chen H, Niu G, Wu H, Chen X, Clinical application of radiolabeled RGD peptides for PET imaging of integrin αvβ3. Theranostics. 2016;6:78–92. [CrossRef] [PubMed] [Google Scholar]
  16. Slack RJ, Macdonald SJF, Roper JA, Jenkins RG, Hatley RJD, Emerging therapeutic opportunities for integrin inhibitors. Nature Reviews Drug discovery. 2022;21:60–78. [CrossRef] [PubMed] [Google Scholar]
  17. Ludwig BS, Kessler H, Kossatz S, Reuning U, RGD-binding integrins revisited: How recently discovered functions and novel synthetic ligands (Re-)shape an ever-evolving field. Cancers. 2021;13. [PubMed] [Google Scholar]
  18. Steiger K, Quigley NG, Groll T, Richter F, Zierke MA, Beer AJ, et al. There is a world beyond αvβ3-integrin: Multimeric ligands for imaging of the integrin subtypes αvβ6, αvβ8, αvβ3, and α5β1 by positron emission tomography. EJNMMI Research. 2021;11:106. [CrossRef] [PubMed] [Google Scholar]
  19. Ebenhan T, Kleynhans J, Zeevaart JR, Jeong JM, Sathekge M, Non-oncological applications of RGD-based single-photon emission tomography and positron emission tomography agents. European Journal of Nuclear Medicine and Molecular Imaging. 2021;48:1414–1433. [CrossRef] [PubMed] [Google Scholar]
  20. Jin H, Varner J, Integrins: roles in cancer development and as treatment targets. British Journal of Cancer. 2004;90:561–565. [CrossRef] [PubMed] [Google Scholar]
  21. Tucker GC, Integrins: molecular targets in cancer therapy. Current Oncology Reports. 2006;8:96–103. [CrossRef] [PubMed] [Google Scholar]
  22. Alday-Parejo B, Stupp R, Rüegg C, Are integrins still practicable targets for anti-cancer therapy? Cancers. 2019;11:978. [CrossRef] [PubMed] [Google Scholar]
  23. Stewart RL, O’Connor KL, Clinical significance of the integrin α6β4 in human malignancies. Laboratory investigation; a journal of technical methods and pathology. 2015;95:976–986. [Google Scholar]
  24. Pawar SC, Demetriou MC, Nagle RB, Bowden GT, Cress AE, Integrin alpha6 cleavage: a novel modification to modulate cell migration. Experimental Cell Research. 2007;313:1080–1089. [CrossRef] [PubMed] [Google Scholar]
  25. Karthaus WR, Iaquinta PJ, Drost J, Gracanin A, van Boxtel R, Wongvipat J, et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell. 2014;159:163–175. [CrossRef] [PubMed] [Google Scholar]
  26. Brooks DL, Schwab LP, Krutilina R, Parke DN, Sethuraman A, Hoogewijs D, et al. ITGA6 is directly regulated by hypoxia-inducible factors and enriches for cancer stem cell activity and invasion in metastatic breast cancer models. Molecular Cancer. 2016;15:26. [CrossRef] [PubMed] [Google Scholar]
  27. Nishida K, Kitazawa R, Mizuno K, Maeda S, Kitazawa S, Identification of regulatory elements of human alpha 6 integrin subunit gene. Biochemical and Biophysical Research Communications. 1997;241:258–263. [CrossRef] [PubMed] [Google Scholar]
  28. Ports MO, Nagle RB, Pond GD, Cress AE, Extracellular engagement of alpha6 integrin inhibited urokinase-type plasminogen activator-mediated cleavage and delayed human prostate bone metastasis. Cancer Research. 2009;69:5007–5014. [CrossRef] [PubMed] [Google Scholar]
  29. Li A, Simmons PJ, Kaur P. Identification and isolation of candidate human keratinocyte stem cells based on cell surface phenotype. Proceedings of the National Academy of Sciences of the United States of America. 1998;95:3902–7. [CrossRef] [PubMed] [Google Scholar]
  30. Krebsbach PH, Villa-Diaz LG, The role of integrin α6 (CD49f) in stem cells: more than a conserved biomarker. Stem Cells and Development. 2017;26:1090–1099. [CrossRef] [PubMed] [Google Scholar]
  31. Hogervorst F, Kuikman I, Van Kessel AG, Sonnenberg A, Molecular cloning of the human α6 integrin subunit. European Journal of Biochemistry. 1991;199:425–433. [CrossRef] [PubMed] [Google Scholar]
  32. Borland G, Cushley W, Positioning the immune system: unexpected roles for alpha6-integrins. Immunology. 2004;111:381–383. [CrossRef] [PubMed] [Google Scholar]
  33. Delwel GO, Kuikman I, Sonnenberg A, An alternatively spliced exon in the extracellular domain of the human alpha 6 integrin subunit–functional analysis of the alpha 6 integrin variants. Cell Adhesion and Communication. 1995;3:143–161. [CrossRef] [PubMed] [Google Scholar]
  34. Ziober BL, Vu MP, Waleh N, Crawford J, Lin CS, Kramer RH, Alternative extracellular and cytoplasmic domains of the integrin alpha 7 subunit are differentially expressed during development. The Journal of Biological Chemistry. 1993;268:26773–26783. [CrossRef] [PubMed] [Google Scholar]
  35. Davis TL, Rabinovitz I, Futscher BW, Schnölzer M, Burger F, Liu Y, et al. Identification of a novel structural variant of the alpha 6 integrin. The Journal of Biological Chemistry. 2001;276:26099–26106. [CrossRef] [PubMed] [Google Scholar]
  36. Kajiji S, Tamura RN, Quaranta V, A novel integrin (alpha E beta 4) from human epithelial cells suggests a fourth family of integrin adhesion receptors. The EMBO Journal. 1989;8:673–680. [CrossRef] [PubMed] [Google Scholar]
  37. Stepp MA, Spurr-Michaud S, Tisdale A, Elwell J, Gipson IK, Alpha 6 beta 4 integrin heterodimer is a component of hemidesmosomes. Proceedings of the National Academy of Sciences of the United States of America. 1990;87:8970–8974. [CrossRef] [PubMed] [Google Scholar]
  38. Shaw LM, Rabinovitz I, Wang HH, Toker A, Mercurio AM, Activation of phosphoinositide 3-OH kinase by the alpha6beta4 integrin promotes carcinoma invasion. Cell. 1997;91:949–960. [CrossRef] [PubMed] [Google Scholar]
  39. Dajee M, Lazarov M, Zhang JY, Cai T, Green CL, Russell AJ, et al. NF-kappaB blockade and oncogenic Ras trigger invasive human epidermal neoplasia. Nature. 2003;421:639–643. [CrossRef] [PubMed] [Google Scholar]
  40. Nikolopoulos SN, Blaikie P, Yoshioka T, Guo W, Giancotti FG, Integrin beta4 signaling promotes tumor angiogenesis. Cancer Cell. 2004;6:471–483. [CrossRef] [PubMed] [Google Scholar]
  41. Guo W, Pylayeva Y, Pepe A, Yoshioka T, Muller WJ, Inghirami G, et al. Beta 4 integrin amplifies ErbB2 signaling to promote mammary tumorigenesis. Cell. 2006;126:489–502. [CrossRef] [PubMed] [Google Scholar]
  42. Lee T-H, Seng S, Li H, Kennel SJ, Avraham HK, Avraham S, Integrin regulation by vascular endothelial growth factor in human brain microvascular endothelial cells: role of α6β1 integrin in angiogenesis*. Journal of Biological Chemistry. 2006;281:40450–40460. [CrossRef] [Google Scholar]
  43. Lathia JD, Gallagher J, Heddleston JM, Wang J, Eyler CE, Macswords J, et al. Integrin alpha 6 regulates glioblastoma stem cells. Cell Stem Cell. 2010;6:421–432. [CrossRef] [PubMed] [Google Scholar]
  44. Goel HL, Pursell B, Chang C, Shaw LM, Mao J, Simin K, et al. GLI1 regulates a novel neuropilin-2/α6β1 integrin based autocrine pathway that contributes to breast cancer initiation. EMBO Mol Med. 2013;5:488–508. [CrossRef] [PubMed] [Google Scholar]
  45. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z, GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Research. 2017;45:W98–W102. [CrossRef] [PubMed] [Google Scholar]
  46. Feng GK, Zhang MQ, Wang HX, Cai J, Chen SP, Wang Q, et al. Identification of an integrin α6-targeted peptide for nasopharyngeal carcinoma-specific nanotherapeutics. Advanced Therapeutics. 2019;1900018. [CrossRef] [Google Scholar]
  47. Hoshino A, Costa-Silva B, Shen T-L, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527:329–335. [CrossRef] [PubMed] [Google Scholar]
  48. Lin B-Q, Zhang W-B, Zhao J, Zhou X-H, Li Y-J, Deng J, et al. An optimized integrin α6-targeted magnetic resonance probe for molecular imaging of hepatocellular carcinoma in mice. Journal of Hepatocellular Carcinoma. 2021;8:645–656. [CrossRef] [Google Scholar]
  49. Gao X, Li L, Cai X, Huang Q, Xiao J, Cheng Y, Targeting nanoparticles for diagnosis and therapy of bone tumors: opportunities and challenges. Biomaterials. 2021;265:120404. [CrossRef] [PubMed] [Google Scholar]
  50. Lee N, Yoo D, Ling D, Cho MH, Hyeon T, Cheon J, Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chemical Reviews. 2015;115:10637–10689. [CrossRef] [PubMed] [Google Scholar]
  51. Zhou Y, Chakraborty S, Liu S, Radiolabeled Cyclic RGD Peptides as Radiotracers for Imaging Tumors and Thrombosis by SPECT. Theranostics. 2011;1:58–82. [CrossRef] [PubMed] [Google Scholar]
  52. Zhao Z, Ukidve A, Kim J, Mitragotri S, Targeting strategies for tissue-specific drug delivery. Cell. 2020;181:151–167. [CrossRef] [PubMed] [Google Scholar]
  53. Feng GK, Ye JC, Zhang WG, Mei Y, Zhou C, Xiao YT, et al. Integrin α6 targeted positron emission tomography imaging of hepatocellular carcinoma in mouse models. Journal of Controlled Release: Official Journal of the Controlled Release Society. 2019;310:11–21. [CrossRef] [Google Scholar]
  54. Feng G-K, Zhang M-Q, Wang H-X, Cai J, Chen S-P, Wang Q, et al. Identification of an integrin α6-targeted peptide for nasopharyngeal carcinoma-specific nanotherapeutics. Advanced Therapeutics. 2019;2:1900018. [CrossRef] [Google Scholar]
  55. Xiao YT, Zhou C, Ye JC, Yang XC, Li ZJ, Zheng XB, et al. Integrin α6-targeted positron emission tomography imaging of colorectal cancer. ACS Omega. 2019;4:15560–15566. [CrossRef] [PubMed] [Google Scholar]
  56. Gao S, Jia B, Feng G, Dong C, Du H, Bai L, et al. First-in-human pilot study of an integrin α6-targeted radiotracer for SPECT imaging of breast cancer. Signal transduction and targeted therapy. 2020;5:147. [CrossRef] [PubMed] [Google Scholar]
  57. Mei Y, Li YH, Yang XC, Zhou C, Li ZJ, Zheng XB, et al. An optimized integrin α6-targeted peptide for positron emission tomography/magnetic resonance imaging of pancreatic cancer and its precancerous lesion. Clinical and Translational Medicine. 2020;10:e157. [PubMed] [Google Scholar]
  58. Yang C-T, Ghosh KK, Padmanabhan P, Langer O, Liu J, Eng DNC, et al. PET-MR and SPECT-MR multimodality probes: Development and challenges. Theranostics. 2018;8:6210–6232. [CrossRef] [PubMed] [Google Scholar]
  59. Zhang W, Li Y, Chen G, Yang X, Hu J, Zhang X, et al. Integrin α6-targeted molecular imaging of central nervous system leukemia in mice. Frontiers in Bioengineering and Biotechnology. 2022;10:812277. [CrossRef] [PubMed] [Google Scholar]
  60. Tang B, Yang Y, Kang M, Wang Y, Wang Y, Bi Y, et al. m(6)A demethylase ALKBH5 inhibits pancreatic cancer tumorigenesis by decreasing WIF-1 RNA methylation and mediating Wnt signaling. Molecular Cancer. 2020;19:3. [CrossRef] [PubMed] [Google Scholar]
  61. Boj SF, Hwang C-I, Baker LA, Chio IIC, Engle DD, Corbo V, et al. Organoid models of human and mouse ductal pancreatic cancer. Cell. 2015;160:324–338. [CrossRef] [PubMed] [Google Scholar]
  62. Strobel O, Büchler MW, Pancreatic cancer: FDG-PET is not useful in early pancreatic cancer diagnosis. Nature Reviews Gastroenterology & Hepatology. 2013;10:203–205. [CrossRef] [PubMed] [Google Scholar]
  63. Luo Q, Yang G, Gao H, Wang Y, Luo C, Ma X, et al. An integrin Alpha 6-targeted radiotracer with improved receptor binding affinity and tumor uptake. Bioconjugate Chemistry. 2020;31:1510–1521. [CrossRef] [PubMed] [Google Scholar]
  64. Wang Y, Yan B, Chen L, SERS tags: novel optical nanoprobes for bioanalysis. Chem Rev. 2013;113:1391–1428. [CrossRef] [PubMed] [Google Scholar]
  65. Lock LL, Li Y, Mao X, Chen H, Staedtke V, Bai R, et al. One-component supramolecular filament hydrogels as theranostic label-free magnetic resonance imaging agents. ACS Nano. 2017;11:797–805. [CrossRef] [PubMed] [Google Scholar]
  66. Akkus Z, Sedlar J, Coufalova L, Korfiatis P, Kline TL, Warner JD, et al. Semi-automated segmentation of pre-operative low grade gliomas in magnetic resonance imaging. Cancer Imaging. 2015;15:12. [CrossRef] [PubMed] [Google Scholar]
  67. Zhang Y, Zhao J, Cai J, Ye JC, Xiao YT, Mei Y, et al. Integrin α6-targeted magnetic resonance imaging of hepatocellular carcinoma in mice. Molecular Imaging and Biology. 2020;22:864–872. [CrossRef] [PubMed] [Google Scholar]
  68. Zhang Y, Liu X, Zhang Y, Li W-F, Chen L, Mao Y-P, et al. Prognostic value of the primary lesion Apparent Diffusion Coefficient (ADC) in nasopharyngeal carcinoma: a retrospective study of 541 cases. Scientific Reports. 2015;5:12242. [CrossRef] [PubMed] [Google Scholar]
  69. Uematsu T, Yuen S, Kasami M, Uchida Y, Comparison of magnetic resonance imaging, multidetector row computed tomography, ultrasonography, and mammography for tumor extension of breast cancer. Breast Cancer Research and Treatment. 2008;112:461–474. [CrossRef] [PubMed] [Google Scholar]
  70. Jacob H, Dybvik JA, Ytre-Hauge S, Fasmer KE, Hoivik EA, Trovik J, et al. An MRI-based radiomic prognostic index predicts poor outcome and specific genetic alterations in endometrial cancer. Journal of Clinical Medicine. 2021;10:538. [CrossRef] [PubMed] [Google Scholar]
  71. Semple SI, Harry VN, Parkin DE, Gilbert FJ, A combined pharmacokinetic and radiologic assessment of dynamic contrast-enhanced magnetic resonance imaging predicts response to chemoradiation in locally advanced cervical cancer. International Journal of Radiation Oncology, Biology, Physics. 2009;75:611–617. [CrossRef] [PubMed] [Google Scholar]
  72. Wang W, Viswanathan AN, Damato AL, Chen Y, Tse Z, Pan L, et al. Evaluation of an active magnetic resonance tracking system for interstitial brachytherapy. Medical physics. 2015;42:7114–7121. [CrossRef] [PubMed] [Google Scholar]
  73. Peng Y, Tang H, Hu X, Shen Y, Kamel I, Li Z, et al. Rectal cancer invasiveness: whole-lesion Diffusion-Weighted Imaging (DWI) histogram analysis by comparison of reduced field-of-view and conventional DWI techniques. Scientific Reports. 2019;9:18760. [CrossRef] [PubMed] [Google Scholar]
  74. Chatterjee A, Bourne RM, Wang S, Devaraj A, Gallan AJ, Antic T, et al. Diagnosis of Prostate Cancer with Noninvasive Estimation of Prostate Tissue Composition by Using Hybrid Multidimensional MR Imaging: A Feasibility Study. Radiology. 2018;287:864–873. [CrossRef] [PubMed] [Google Scholar]
  75. Henderson L, Neumann O, Kaffes C, Zhang R, Marangoni V, Ravoori MK, et al. Routes to potentially safer T(1) magnetic resonance imaging contrast in a compact plasmonic nanoparticle with enhanced fluorescence. ACS Nano. 2018;12:8214–8223. [CrossRef] [PubMed] [Google Scholar]
  76. Achilefu S, Introduction to concepts and strategies for molecular imaging. Chemical Reviews. 2010;110:2575–2578. [CrossRef] [PubMed] [Google Scholar]
  77. Aime S, Castelli DD, Crich SG, Gianolio E, Terreno E, Pushing the sensitivity envelope of lanthanide-based magnetic resonance imaging (MRI) contrast agents for molecular imaging applications. Accounts of Chemical Research. 2009;42:822–831. [CrossRef] [PubMed] [Google Scholar]
  78. Sim N, Parker D, Critical design issues in the targeted molecular imaging of cell surface receptors. Chemical Society Reviews. 2015;44:2122–2134. [CrossRef] [PubMed] [Google Scholar]
  79. Caravan P, Ellison JJ, McMurry TJ, Lauffer RB, Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chemical Reviews. 1999;99:2293–2352. [CrossRef] [PubMed] [Google Scholar]
  80. Lee S, Xie J, Chen X, Peptides and peptide hormones for molecular imaging and disease diagnosis. Chemical Reviews. 2010;110:3087–3111. [CrossRef] [PubMed] [Google Scholar]
  81. Yao VJ, D’Angelo S, Butler KS, Theron C, Smith TL, Marchiò S, et al. Ligand-targeted theranostic nanomedicines against cancer. Journal of Controlled Release: Official Journal of the Controlled Release Society. 2016;240:267–286. [CrossRef] [Google Scholar]
  82. Araste F, Abnous K, Hashemi M, Taghdisi SM, Ramezani M, Alibolandi M, Peptide-based targeted therapeutics: Focus on cancer treatment. Journal of Controlled Release: Official Journal of the Controlled Release Society. 2018;292:141–162. [CrossRef] [Google Scholar]
  83. Tan M, Lu ZR, Integrin Targeted MR Imaging. Theranostics. 2011;1:83–101. [Google Scholar]
  84. Liese S, Gensler M, Krysiak S, Schwarzl R, Achazi A, Paulus B, et al. Hydration effects turn a highly stretched polymer from an entropic into an energetic spring. ACS Nano. 2017;11:702–712. [CrossRef] [PubMed] [Google Scholar]
  85. Pfeifer H, Wassmann B, Hofmann WK, Komor M, Scheuring U, Brück P, et al. Risk and prognosis of central nervous system leukemia in patients with Philadelphia chromosome-positive acute leukemias treated with imatinib mesylate. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research. 2003;9:4674–4681. [Google Scholar]
  86. Izraeli S, Eckert C, Targeted therapy of CNS leukemia? Blood. 2017;130:562–563. [CrossRef] [PubMed] [Google Scholar]
  87. Venneti S, Dunphy MP, Zhang H, Pitter KL, Zanzonico P, Campos C, et al. Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Science Translational Medicine. 2015;7:274ra17–ra17. [CrossRef] [Google Scholar]
  88. Millard M, Odde S, Neamati N, Integrin targeted therapeutics. Theranostics. 2011;1:154–188. [CrossRef] [PubMed] [Google Scholar]
  89. Niu G, Chen X, Why integrin as a primary target for imaging and therapy? Theranostics. 2011;1:30–47. [CrossRef] [PubMed] [Google Scholar]
  90. Hamidi H, Ivaska J, Every step of the way: integrins in cancer progression and metastasis. Nature Reviews Cancer. 2018;18:533–548. [CrossRef] [PubMed] [Google Scholar]
  91. Lu X, Lu D, Scully M, Kakkar V, The role of integrins in cancer and the development of anti-integrin therapeutic agents for cancer therapy. Perspectives in Medicinal Chemistry. 2008;2:57–73. [PubMed] [Google Scholar]
  92. Landowski TH, Gard J, Pond E, Pond GD, Nagle RB, Geffre CP, et al. Targeting integrin α6 stimulates curative-type bone metastasis lesions in a xenograft model. Molecular Cancer Therapeutics. 2014;13:1558–1566. [CrossRef] [PubMed] [Google Scholar]
  93. Hogervorst F, Kuikman I, Noteboom E, Sonnenberg A, The role of phosphorylation in activation of the alpha 6A beta 1 laminin receptor. The Journal of Biological Chemistry. 1993;268:18427–18430. [CrossRef] [PubMed] [Google Scholar]
  94. Shi H, Wang Q, Venkatesh V, Feng G, Young LS, Romero-Canelón I, et al. Photoactive platinum(iv) complex conjugated to a cancer-cell-targeting cyclic peptide. Dalton Transactions (Cambridge, England: 2003). 2019;48:8560–8564. [CrossRef] [PubMed] [Google Scholar]
  95. Lipscomb EA, Dugan AS, Rabinovitz I, Mercurio AM, Use of RNA interference to inhibit integrin (α6β4)-mediated invasion and migration of breast carcinoma cells. Clinical & Experimental Metastasis. 2003;20:569–576. [CrossRef] [PubMed] [Google Scholar]
  96. Yao H, Price TT, Cantelli G, Ngo B, Warner MJ, Olivere L, et al. Leukaemia hijacks a neural mechanism to invade the central nervous system. Nature. 2018;560:55–60. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.