Open Access
Review
Issue
Vis Cancer Med
Volume 3, 2022
Article Number 3
Number of page(s) 8
DOI https://doi.org/10.1051/vcm/2022004
Published online 12 September 2022
  1. Bedford DC, Kasper LH, Fukuyama T, et al. Target gene context influences the transcriptional requirement for the KAT3 family of CBP and p300 histone acetyltransferases. Epigenetics. 2010;5(1):9–15. [CrossRef] [PubMed] [Google Scholar]
  2. Chan HM, La Thangue NB. p300/CBP proteins: HATs for transcriptional bridges and scaffolds. Journal of Cell Science. 2001;114(Pt 13):2363–2373. [CrossRef] [PubMed] [Google Scholar]
  3. Gerona-Navarro G, Yoel R, Mujtaba S, et al. Rational design of cyclic peptide modulators of the transcriptional coactivator CBP: a new class of p53 inhibitors. Journal of the American Chemical Society. 2011;133(7):2040–2043. [CrossRef] [PubMed] [Google Scholar]
  4. Goodman RH, Smolik S. CBP/p300 in cell growth, transformation, and development. Genes & Development. 2000;14(13):1553–1577. [CrossRef] [PubMed] [Google Scholar]
  5. Kalkhoven E. CBP and p300: HATs for different occasions. Biochemical Pharmacology. 2004;68(6):1145–1155. [CrossRef] [PubMed] [Google Scholar]
  6. Vo N, Goodman RH. CREB-binding protein and p300 in transcriptional regulation. Journal of Biological Chemistry. 2001;276(17):13505–13508. [CrossRef] [Google Scholar]
  7. Janknecht R. The versatile functions of the transcriptional coactivators p300 and CBP and their roles in disease. Histology and Histopathology. 2002;17(2):657–668. [PubMed] [Google Scholar]
  8. Wang L, Tang Y, Cole PA, Marmorstein R. Structure and chemistry of the p300/CBP and Rtt109 histone acetyltransferases: implications for histone acetyltransferase evolution and function. Current Opinion in Structural Biology. 2008;18(6):741–747. [CrossRef] [PubMed] [Google Scholar]
  9. Panagopoulos I, Fioretos T, Isaksson M, et al. Fusion of the MORF and CBP genes in acute myeloid leukemia with the t(10;16)(q22;p13). Human Molecular Genetics. 2001;10(4):395–404. [CrossRef] [PubMed] [Google Scholar]
  10. Bouchal J, Santer FR, Hoschele PP, et al. Transcriptional coactivators p300 and CBP stimulate estrogen receptor-beta signaling and regulate cellular events in prostate cancer. Prostate. 2011;71(4):431–437. [CrossRef] [PubMed] [Google Scholar]
  11. Wang F, Marshall CB, Ikura M. Transcriptional/epigenetic regulator CBP/p300 in tumorigenesis: structural and functional versatility in target recognition. Cellular and Molecular Life Sciences. 2013;70(21):3989–4008. [CrossRef] [PubMed] [Google Scholar]
  12. Dutta R, Tiu B, Sakamoto KM. CBP/p300 acetyltransferase activity in hematologic malignancies. Molecular Genetics and Metabolism. 2016;119(1–2):37–43. [CrossRef] [PubMed] [Google Scholar]
  13. Fujisawa T, Filippakopoulos P. Functions of bromodomain-containing proteins and their roles in homeostasis and cancer. Nature Reviews Molecular Cell Biology. 2017;18(4):246–262. [CrossRef] [PubMed] [Google Scholar]
  14. Iyer NG, Ozdag H, Caldas C. p300/CBP and cancer. Oncogene. 2004;23(24):4225–4231. [CrossRef] [PubMed] [Google Scholar]
  15. Ianculescu I, Wu DY, Siegmund KD, et al. Selective roles for cAMP response element-binding protein binding protein and p300 protein as coregulators for androgen-regulated gene expression in advanced prostate cancer cells. Journal of Biological Chemistry. 2012;287(6):4000–4013. [CrossRef] [Google Scholar]
  16. Jin L, Garcia J, Chan E, et al. Therapeutic targeting of the CBP/p300 bromodomain blocks the growth of castration-resistant prostate cancer. Cancer Research. 2017;77(20):5564–5575. [CrossRef] [PubMed] [Google Scholar]
  17. Schiltz RL, Mizzen CA, Vassilev A, et al. Overlapping but distinct patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates. Journal of Biological Chemistry. 1999;274(3):1189–1192. [CrossRef] [Google Scholar]
  18. Dancy BM, Cole PA. Protein lysine acetylation by p300/CBP. Chemical Reviews. 2015;115(6):2419–2452. [CrossRef] [PubMed] [Google Scholar]
  19. Ragvin A, Valvatne H, Erdal S, et al. Nucleosome binding by the bromodomain and PHD finger of the transcriptional cofactor p300. Journal of Molecular Biology. 2004;337(4):773–788. [CrossRef] [PubMed] [Google Scholar]
  20. Dekker FJ, Haisma HJ. Histone acetyl transferases as emerging drug targets. Drug Discovery Today. 2009;14(19–20):942–948. [CrossRef] [PubMed] [Google Scholar]
  21. Vidler LR, Brown N, Knapp S, et al. Druggability analysis and structural classification of bromodomain acetyl-lysine binding sites. Journal of Medicinal Chemistry. 2012;55(17):7346–7359. [CrossRef] [PubMed] [Google Scholar]
  22. Delvecchio M, Gaucher J, Aguilar-Gurrieri C, et al. Structure of the p300 catalytic core and implications for chromatin targeting and HAT regulation. Nature Structural & Molecular Biology. 2013;20(9):1040–1046. [CrossRef] [PubMed] [Google Scholar]
  23. Haynes SR, Dollard C, Winston F, et al. The bromodomain: a conserved sequence found in human, Drosophila and yeast proteins. Nucleic Acids Research. 1992;20(10):2603. [CrossRef] [PubMed] [Google Scholar]
  24. Tamkun JW, Deuring R, Scott MP, et al. brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell. 1992;68(3):561–572. [CrossRef] [PubMed] [Google Scholar]
  25. Venturini L, You J, Stadler M, et al. TIF1gamma, a novel member of the transcriptional intermediary factor 1 family. Oncogene. 1999;18(5):1209–1217. [CrossRef] [PubMed] [Google Scholar]
  26. Jacobson RH, Ladurner AG, King DS, et al. Structure and function of a human TAFII250 double bromodomain module. Science. 2000;288(5470):1422–1425. [CrossRef] [PubMed] [Google Scholar]
  27. Bres V, Yoh SM, Jones KA. The multi-tasking P-TEFb complex. Current Opinion in Cell Biology. 2008;20(3):334–340. [CrossRef] [PubMed] [Google Scholar]
  28. Gregory GD, Vakoc CR, Rozovskaia T, et al. Mammalian ASH1L is a histone methyltransferase that occupies the transcribed region of active genes. Molecular and Cellular Biology. 2007;27(24):8466–8479. [CrossRef] [PubMed] [Google Scholar]
  29. Malik S, Bhaumik SR. Mixed lineage leukemia: histone H3 lysine 4 methyltransferases from yeast to human. FEBS Journal. 2010;277(8):1805–1821. [CrossRef] [Google Scholar]
  30. Nagy Z, Tora L. Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation. Oncogene. 2007;26(37):5341–5357. [CrossRef] [PubMed] [Google Scholar]
  31. Zeng L, Zhou MM. Bromodomain: an acetyl-lysine binding domain. FEBS Letters. 2002;513(1):124–128. [CrossRef] [PubMed] [Google Scholar]
  32. Jang MK, Mochizuki K, Zhou M, et al. The bromodomain protein BRD4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Molecular Cell. 2005;19(4):523–534. [CrossRef] [PubMed] [Google Scholar]
  33. Dawson MA, Prinjha RK, Dittmann A, et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature. 2011;478(7370):529–533. [CrossRef] [PubMed] [Google Scholar]
  34. Sanchez R, Meslamani J, Zhou MM. The bromodomain: from epigenome reader to druggable target. Biochimica et Biophysica Acta. 2014;1839(8):676–685. [CrossRef] [PubMed] [Google Scholar]
  35. Filippakopoulos P, Knapp S. Targeting bromodomains: epigenetic readers of lysine acetylation. Nature Reviews Drug Discovery. 2014;13(5):337–356. [CrossRef] [PubMed] [Google Scholar]
  36. Hay DA, Fedorov O, Martin S, et al. Discovery and optimization of small-molecule ligands for the CBP/p300 bromodomains. Journal of the American Chemical Society. 2014;136(26):9308–9319. [CrossRef] [PubMed] [Google Scholar]
  37. Romero FA, Taylor AM, Crawford TD, et al. Disrupting acetyl-lysine recognition: progress in the development of bromodomain inhibitors. Journal of Medicinal Chemistry. 2016;59(4):1271–1298. [CrossRef] [PubMed] [Google Scholar]
  38. Bronner SM, Murray J, Romero FA, et al. A unique approach to design potent and selective cyclic adenosine monophosphate response element binding protein, binding protein (CBP) inhibitors. Journal of Medicinal Chemistry. 2017;60(24):10151–10171. [CrossRef] [PubMed] [Google Scholar]
  39. Romero FA, Murray J, Lai KW, et al. GNE-781, a highly advanced potent and selective bromodomain inhibitor of cyclic adenosine monophosphate response element binding protein, binding protein (CBP). Journal of Medicinal Chemistry. 2017;60(22):9162–9183. [CrossRef] [PubMed] [Google Scholar]
  40. Filippakopoulos P, Picaud S, Mangos M, et al. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell. 2012;149(1):214–231. [CrossRef] [PubMed] [Google Scholar]
  41. Muller S, Filippakopoulos P, Knapp S. Bromodomains as therapeutic targets. Expert Reviews in Molecular Medicine. 2011;13:e29 [CrossRef] [PubMed] [Google Scholar]
  42. Attar N, Kurdistani SK. Exploitation of EP300 and CREBBP lysine acetyltransferases by cancer. Cold Spring Harbor Perspectives in Medicine. 2017;7(3):a026534. [CrossRef] [PubMed] [Google Scholar]
  43. Rooney TP, Filippakopoulos P, Fedorov O, et al. A series of potent CREBBP bromodomain ligands reveals an induced-fit pocket stabilized by a cation-pi interaction. Angewandte Chemie International Edition in English. 2014;53(24):6126–6130. [CrossRef] [Google Scholar]
  44. Hammitzsch A, Tallant C, Fedorov O, et al. CBP30, a selective CBP/p300 bromodomain inhibitor, suppresses human Th17 responses. Proceedings of the National Academy of Sciences USA. 2015;112(34):10768–10773. [CrossRef] [PubMed] [Google Scholar]
  45. Crawford TD, Romero FA, Lai KW, et al. Discovery of a potent and selective in vivo probe (GNE-272) for the bromodomains of CBP/EP300. Journal of Medicinal Chemistry. 2016;59(23):10549–10563. [CrossRef] [PubMed] [Google Scholar]
  46. Popp TA, Tallant C, Rogers C, et al. Development of selective CBP/P300 benzoxazepine bromodomain inhibitors. Journal of Medicinal Chemistry. 2016;59(19):8889–8912. [CrossRef] [PubMed] [Google Scholar]
  47. Taylor AM, Cote A, Hewitt MC, et al. Fragment-based discovery of a selective and cell-active benzodiazepinone CBP/EP300 bromodomain inhibitor (CPI-637). ACS Medicinal Chemistry Letters. 2016;7(5):531–536. [CrossRef] [PubMed] [Google Scholar]
  48. Unzue A, Xu M, Dong J, et al. Fragment-based design of selective nanomolar ligands of the CREBBP bromodomain. Journal of Medicinal Chemistry. 2016;59(4):1350–1356. [CrossRef] [PubMed] [Google Scholar]
  49. Xu M, Unzue A, Dong J, et al. Discovery of CREBBP bromodomain inhibitors by high-throughput docking and hit optimization guided by molecular dynamics. Journal of Medicinal Chemistry. 2016;59(4):1340–1349. [CrossRef] [PubMed] [Google Scholar]
  50. Xiang Q, Wang C, Zhang Y, et al. Discovery and optimization of 1-(1H-indol-1-yl)ethanone derivatives as CBP/EP300 bromodomain inhibitors for the treatment of castration-resistant prostate cancer. European Journal of Medicinal Chemistry. 2018;147:238–252. [CrossRef] [PubMed] [Google Scholar]
  51. Zou LJ, Xiang QP, Xue XQ, et al. Y08197 is a novel and selective CBP/EP300 bromodomain inhibitor for the treatment of prostate cancer. Acta Pharmacologica Sinica. 2019;40(11):1436–1447. [CrossRef] [PubMed] [Google Scholar]
  52. Muthengi A, Wimalasena VK, Yosief HO, et al. Development of dimethylisoxazole-attached imidazo[1,2-a]pyridines as potent and selective CBP/P300 inhibitors. Journal of Medicinal Chemistry. 2021;64(9):5787–5801. [CrossRef] [PubMed] [Google Scholar]
  53. Welti J, Sharp A, Brooks N, et al. Targeting the p300/CBP axis in lethal prostate cancer. Cancer Discovery. 2021;11(5):1118–1137. [CrossRef] [PubMed] [Google Scholar]
  54. Xiang Q, Wang C, Wu T, et al. Design, synthesis, and biological evaluation of 1-(indolizin-3-yl)ethan-1-ones as CBP bromodomain inhibitors for the treatment of prostate cancer. Journal of Medicinal Chemistry. 2022;65(1):785–810. [CrossRef] [PubMed] [Google Scholar]
  55. Picaud S, Fedorov O, Thanasopoulou A, et al. Generation of a selective small molecule inhibitor of the CBP/p300 bromodomain for leukemia therapy. Cancer Research. 2015;75(23):5106–5119. [CrossRef] [PubMed] [Google Scholar]
  56. Hay D, Fedorov O, Filippakopoulos P, et al. The design and synthesis of 5- and 6-isoxazolylbenzimidazoles as selective inhibitors of the BET bromodomains. Medchemcomm. 2013;4(1):140–144. [CrossRef] [PubMed] [Google Scholar]
  57. Pegg NA, Taddei DMA, Onions ST, et al. Isoxazolyl substituted benzimidazoles. US20180127402A1. 2018. [Google Scholar]
  58. Zhang Y, Xue X, Jin X, et al. Discovery of 2-oxo-1,2-dihydrobenzo[cd]indole-6-sulfonamide derivatives as new RORgamma inhibitors using virtual screening, synthesis and biological evaluation. European Journal of Medicinal Chemistry. 2014;78:431–441. [CrossRef] [PubMed] [Google Scholar]
  59. Song Y, Xue X, Wu X et al. Identification of N-phenyl-2-(N-phenylphenylsulfonamido)acetamides as new RORgamma inverse agonists: Virtual screening, structure-based optimization, and biological evaluation. European Journal of Medicinal Chemistry. 2016;116:13–26. [CrossRef] [PubMed] [Google Scholar]
  60. Xue X, Zhang Y, Liu Z, et al. Discovery of benzo[cd]indol-2(1H)-ones as potent and specific bet bromodomain inhibitors: structure-based virtual screening, optimization, and biological evaluation. Journal of Medicinal Chemistry. 2016;59(4):1565–1579. [CrossRef] [PubMed] [Google Scholar]
  61. Zhou Y, Nie T, Zhang Y, et al. The discovery of novel and selective fatty acid binding protein 4 inhibitors by virtual screening and biological evaluation. Bioorganic & Medicinal Chemistry. 2016;24(18):4310–4317. [CrossRef] [PubMed] [Google Scholar]
  62. Toure M, Crews CM. Small-molecule PROTACS: New approaches to protein degradation. Angewandte Chemie International Edition in English. 2016;55(6):1966–1973. [CrossRef] [Google Scholar]
  63. Lai AC, Crews CM. Induced protein degradation: an emerging drug discovery paradigm. Nature Reviews Drug Discovery. 2017;16(2):101–114. [CrossRef] [PubMed] [Google Scholar]
  64. Pettersson M, Crews CM. PROteolysis TArgeting Chimeras (PROTACs) – Past, present and future. Drug Discovery Today: Technologies. 2019;31:15–27. [CrossRef] [Google Scholar]
  65. Liu Z, Li Y, Chen H, et al. Discovery, X-ray crystallography, and anti-inflammatory activity of bromodomain-containing protein 4 (BRD4) BD1 inhibitors targeting a distinct new binding site. Journal of Medicinal Chemistry. 2022;65(3):2388–2408. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.