Open Access
Review
Issue
Vis Cancer Med
Volume 5, 2024
Article Number 3
Number of page(s) 6
DOI https://doi.org/10.1051/vcm/2024002
Published online 16 February 2024
  1. Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, et al. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones. 2009;14(1):105–11. [CrossRef] [PubMed] [Google Scholar]
  2. Hu C, Yang J, Qi ZP, Wu H, Wang BL, Zou FM, et al. Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm. 2022;3(3):e161. [CrossRef] [PubMed] [Google Scholar]
  3. Li HT, Zhou MH, Han JL, Zhu XD, Dong T, Gao GF, et al. Generation of murine CTL by a hepatitis B virus-specific peptide and evaluation of the adjuvant effect of heat shock protein glycoprotein 96 and its terminal fragments. Journal of Immunology. 2005;174(1):195–204. [CrossRef] [PubMed] [Google Scholar]
  4. Binder RJ, Vatner R, Srivastava P. The heat-shock protein receptors: some answers and more questions. Tissue Antigens. 2004;64(4):442–51. [CrossRef] [PubMed] [Google Scholar]
  5. Chalmin F, Ladoire S, Mignot G, Vincent J, Bruchard M, Remy-Martin JP, et al. Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. Journal of Clinical Investigation. 2010;120(2):457–71. [Google Scholar]
  6. Bae J, Munshi A, Li C, Samur M, Prabhala R, Mitsiades C, et al. Heat shock protein 90 is critical for regulation of phenotype and functional activity of human T lymphocytes and NK cells. Journal of Immunology. 2013;190(3):1360–71. [CrossRef] [PubMed] [Google Scholar]
  7. Basu S, Binder RJ, Ramalingam T, Srivastava PK. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity. 2001;14(3):303–13. [CrossRef] [PubMed] [Google Scholar]
  8. Li Z, Menoret A, Srivastava P. Roles of heat-shock proteins in antigen presentation and cross-presentation. Current Opinion Immunology. 2002;14(1):45–51. [CrossRef] [Google Scholar]
  9. Castelli C, Ciupitu AMT, Rini F, Rivoltini L, Mazzocchi A, Kiessling R, et al. Human heat shock protein 70 peptide complexes specifically activate antimelanoma T cells. Cancer Research. 2001;61(1):222–7. [PubMed] [Google Scholar]
  10. Yu XF, Guo CQ, Yi HF, Qian J, Fisher PB, Subjeck JR, et al. A Multifunctional Chimeric Chaperone Serves as a Novel Immune Modulator Inducing Therapeutic Antitumor Immunity. Cancer Research. 2013;73(7):2093–103. [PubMed] [Google Scholar]
  11. Shinagawa N, Yamazaki K, Tamura Y, Imai A, Kikuchi E, Yokouchi H, et al. Immunotherapy with dendritic cells pulsed with tumor-derived gp96 against murine lung cancer is effective through immune response of CD8+ cytotoxic T lymphocytes and natural killer cells Cancer Immunology Immunotheraphy. 2008;57(2):165–74. [Google Scholar]
  12. Hall M, Liu H, Malafa M, Centeno B, Hodul PJ, Pimiento J, et al. Expansion of tumor-infiltrating lymphocytes (TIL) from human pancreatic tumors. Journal of ImmunoTherapy of Cancer.. 2016;4:61. [CrossRef] [Google Scholar]
  13. Goedegebuure PS, Eberlein TJ. The role of CD4+ tumor-infiltrating lymphocytes in human solid tumors Immunologic Research. 1995;14(2):119–31. [CrossRef] [PubMed] [Google Scholar]
  14. Chen YQ, Li PC, Pan N, Gao R, Wen ZF, Zhang TY, et al. Tumor-released autophagosomes induces CD4(+) T cell-mediated immunosuppression via a TLR2-IL-6 cascade Journal for ImmunoTherapy of Cancer. 2019;7(1):178. [CrossRef] [PubMed] [Google Scholar]
  15. Xie Y, Bai O, Zhang H, Yuan J, Zong S, Chibbar R, et al. Membrane-bound HSP70-engineered myeloma cell-derived exosomes stimulate more efficient CD8(+) CTL− and NK-mediated antitumour immunity than exosomes released from heat-shocked tumour cells expressing cytoplasmic HSP70 Journal of Cellular Molecular Medicine. 2010;14(11):2655–66. [CrossRef] [PubMed] [Google Scholar]
  16. Pawaria S, Binder RJ. CD91-dependent programming of T-helper cell responses following heat shock protein immunization. Nature Communications. 2011;2:521. [CrossRef] [PubMed] [Google Scholar]
  17. Corrigall VM, Vittecoq O, Panayi GS. Binding immunoglobulin protein-treated peripheral blood monocyte-derived dendritic cells are refractory to maturation and induce regulatory T-cell development. Immunology. 2009;128(2):218–26. [CrossRef] [PubMed] [Google Scholar]
  18. Tang Y, Jiang Q, Ou Y, Zhang F, Qing K, Sun Y, et al. BIP induces mice CD19(hi) regulatory B cells producing IL-10 and highly expressing PD-L1, FasL. Molecular Immunology. 2016;69:44–51. [CrossRef] [PubMed] [Google Scholar]
  19. Tramentozzi E, Ruli E, Angriman I, Bardini R, Campora M, Guzzardo V, et al. Grp94 in complexes with IgG is a soluble diagnostic marker of gastrointestinal tumors and displays immune-stimulating activity on peripheral blood immune cells. Oncotarget. 2016;7(45):72923–40. [CrossRef] [PubMed] [Google Scholar]
  20. Cohen-Sfady M, Nussbaum G, Pevsner-Fischer M, Mor F, Carmi P, Zanin-Zhorov A, et al. Heat shock protein 60 activates B cells via the TLR4-MyD88 pathway. Journal of Immunology. 2005;175(6):3594–602. [CrossRef] [PubMed] [Google Scholar]
  21. Steinman RM. Decisions about dendritic cells: past, present, and future. Annual Review Immunology. 2012;30:1–22. [CrossRef] [PubMed] [Google Scholar]
  22. Chen TY, Guo J, Han CF, Yang MKJ, Cao XT. Heat shock protein 70, released from heat-stressed tumor cells, initiates antitumor immunity by inducing tumor cell chemokine production and activating dendritic cells via TLR4 pathway. Journal of Immunology. 2009;182(3):1449–59. [CrossRef] [PubMed] [Google Scholar]
  23. Membrane-bound HSP70-engineered myeloma cell-derived exosomes stimulate more efficient CD8. Journal of Cellular and Molecular Medicine 14(11):2655–2666. [Google Scholar]
  24. Kuppner MC, Gastpar R, Gelwer S, Nössner E, Ochmann O, Scharner A, et al. The role of heat shock protein (hsp70) in dendritic cell maturation: Hsp70 induces the maturation of immature dendritic cells but reduces DC differentiation from monocyte precursors. Europen Journal of Immunology. 2001;31(5):1602–9. [CrossRef] [Google Scholar]
  25. Singh-Jasuja H, Scherer HU, Hilf N, Arnold-Schild D, Rammensee HG, Toes REM, et al. The heat shock protein gp96 induces maturation of dendritic cells and down-regulation of its receptor. European Journal of Immunology. 2000;30(8):2211–5. [CrossRef] [PubMed] [Google Scholar]
  26. Ono K, Sogawa C, Kawai H, Tran MT, Taha EA, Lu Y, et al. Triple knockdown of CDC37, HSP90-alpha and HSP90-beta diminishes extracellular vesicles-driven malignancy events and macrophage M2 polarization in oral cancer. Journal of Extracellular Vesicles. 2020;9(1):1769373. [CrossRef] [PubMed] [Google Scholar]
  27. Galloway E, Shin T, Huber N, Eismann T, Kuboki S, Schuster R, et al. Activation of hepatocytes by extracellular heat shock protein 72. -. 2008;295(2):C514–20. [Google Scholar]
  28. Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, et al. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nature Medicine. 2000;6(4):435–42. [CrossRef] [PubMed] [Google Scholar]
  29. Berthenet K, Boudesco C, Collura A, Svrcek M, Richaud S, Hammann A, et al. Extracellular HSP110 skews macrophage polarization in colorectal cancer. Oncoimmunology. 2016;5(7):e1170264. [CrossRef] [PubMed] [Google Scholar]
  30. Liu S, Galat V, Galat Y, Lee YKA, Wainwright D, Wu J. NK cell-based cancer immunotherapy: from basic biology to clinical development. Journal of Hematology & Oncology. 2021;14(1):7. [CrossRef] [PubMed] [Google Scholar]
  31. Albakova Z, Armeev GA, Kanevskiy LM, Kovalenko EI, Sapozhnikov AM. HSP70 multi-functionality in cancer. Cells. 2020;9(3):587. [CrossRef] [PubMed] [Google Scholar]
  32. Strauss-Albee DM, Horowitz A, Parham P, Blish CA. Coordinated regulation of nk receptor expression in the maturing human immune system. Journal of Immunology. 2014;193(10):4871–9. [CrossRef] [PubMed] [Google Scholar]
  33. Stangl S, Gross C, Pockley AG, Asea AA, Multhoff G. Influence of Hsp70 and HLA-E on the killing of leukemic blasts by cytokine/Hsp70 peptide-activated human natural killer (NK) cells. Cell Stress and Chaperons. 2008;13(2):221–30. [CrossRef] [Google Scholar]
  34. Lv LH, Wan YL, Lin Y, Zhang W, Yang M, Li GL, et al. Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses. Journal of Biological Chemistry. 2012;287(19):15874–85. [CrossRef] [Google Scholar]
  35. Metkar SS, Wang BK, Aguilar-Santelises M, Raja SM, Uhlin-Hansen L, Podack E, et al. Cytotoxic cell granule-mediated apoptosis: Perforin delivers granzyme B-serglycin complexes into target cells without plasma membrane pore formation. Immunity. 2002;16(3):417–28. [CrossRef] [PubMed] [Google Scholar]
  36. Lv LH, Wan YL, Lin Y, Zhang W, Yang M, Li GL, et al. Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses in vitro. Journal of Biological Chemistry. 2012;287(19):15874–85. [CrossRef] [Google Scholar]
  37. Gross C, Koelch W, DeMaio A, Arispe N, Multhoff G. Cell surface-bound heat shock protein 70 (Hsp70) mediates perforin-independent apoptosis by specific binding and uptake of granzyme B. Journal of Biological Chemistry. 2003;278(42):41173–81. [CrossRef] [Google Scholar]
  38. Elsner L, Muppala V, Gehrmann M, Lozano J, Malzahn D, Bickeboller H, et al. The heat shock protein HSP70 promotes mouse NK cell activity against tumors that express inducible NKG2D ligands. Journal of Immunology. 2007;179(8):5523–33. [CrossRef] [PubMed] [Google Scholar]
  39. Gastpar R, Gross C, Rossbacher L, Ellwart J, Riegger J, Multhoff G. The cell surface-localized heat shock protein 70 epitope TKD induces migration and cytolytic activity selectively in human NK cells. Journal of Immunology. 2004;172(2):972–80. [CrossRef] [PubMed] [Google Scholar]
  40. Gastpar R, Gehrmann M, Bausero MA, Asea A, Gross C, Schroeder JA, et al. Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Research. 2005;65(12):5238–47. [CrossRef] [PubMed] [Google Scholar]
  41. Zoglmeier C, Bauer H, Nörenberg D, Wedekind G, Bittner P, Sandholzer N. CpG Blocks Immunosuppression by Myeloid-Derived Suppressor Cells in Tumor-Bearing Mice. Clinical Cancer Research. 2017;23(4):1117. [CrossRef] [PubMed] [Google Scholar]
  42. Hegde S, Leader AM, Merad M. MDSC: Markers, development, states, and unaddressed complexity. Immunity. 2021;54(5):875–84. [CrossRef] [PubMed] [Google Scholar]
  43. Claesson-Welsh L, Welsh M. VEGFA and tumour angiogenesis. Journal of Internal Medicine. 2013;273(2):114–27. [CrossRef] [PubMed] [Google Scholar]
  44. Virrey JJ, Dong D, Stiles C, Patterson JB, Pen L, Ni M, et al. Stress chaperone GRP78/BiP confers chemoresistance to tumor-associated endothelial cells. Molecular Cancer Research. 2008;6(8):1268–75. [CrossRef] [PubMed] [Google Scholar]
  45. Davidson DJ, Haskell C, Majest S, Kherzai A, Egan DA, Walter KA, et al. Kringle 5 of human plasminogen induces apoptosis of endothelial and tumor cells through surface-expressed glucose-regulated protein 78. Cancer Research. 2005;65(11):4663–72. [CrossRef] [PubMed] [Google Scholar]
  46. Kim TK, Na HJ, Lee WR, Jeoung MH, Lee S. Heat shock protein 70–1A is a novel angiogenic regulator. Biochemical and Biophysical Research Communications. 2016;469(2):222–8. [CrossRef] [PubMed] [Google Scholar]
  47. Park SL, Chung TW, Kim S, Hwang B, Kim JM, Lee HM, et al. HSP70-1 is required for interleukin-5-induced angiogenic responses through eNOS pathway. Scientific Reports-UK. 2017;7:44687. [CrossRef] [Google Scholar]
  48. Staufer K, Stoeltzing O. Implication of heat shock protein 90 (HSP90) in tumor angiogenesis: a molecular target for anti-angiogenic therapy? Current Cancer Drug Targets.. 2010;10(8):890–7. [CrossRef] [Google Scholar]
  49. Restoring anticancer immune response by targeting tumor-derived exosomes with a HSP70 peptide aptamer. Journal of the National Cancer Institute. 2016;108(3):djv330. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.